High Resolution Angle Resolved Photoemission with Tabletop 11eV Laser

We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10(12) photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å(-1), respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å(-1), granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

[1]  P. Johnson Photemission and the influence of collective excitations , 2002 .

[2]  T. Togashi,et al.  Ultrahigh-resolution photoemission spectroscopy of superconductors using a VUV laser , 2005 .

[3]  Orbital-dependent modifications of electronic structure across the magnetostructural transition in BaFe2As2. , 2009, Physical review letters.

[4]  T. Kondo,et al.  Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates , 2010, 1005.5309.

[5]  H. Takagi,et al.  Evidence for a cos(4φ) modulation of the superconducting energy gap of optimally doped FeTe(0.6)Se(0.4) single crystals using laser angle-resolved photoemission spectroscopy. , 2012, Physical review letters.

[6]  T. Togashi,et al.  Doping-dependence of nodal quasiparticle properties in high- Tc cuprates studied by laser-excited angle-resolved photoemission spectroscopy , 2007, 0710.2962.

[7]  Paul H. Krupenie The Spectrum of Molecular Oxygen , 1972 .

[8]  Superconductivity in iron compounds , 2011, 1106.1618.

[9]  M. Randeria,et al.  Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors , 1996, Nature.

[10]  Lin Zhao,et al.  Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor , 2012, Nature Communications.

[11]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[12]  T. Schmitt,et al.  Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. , 2014, Journal of synchrotron radiation.

[13]  Y. I. Smolin,et al.  Causes of modulation and hole conductivity of the high-Tc superconductor Bi2Sr2CaCu2O8+x according to X-ray single-crystal data , 1994 .

[14]  Bai-chang Wu,et al.  Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal , 1996 .

[15]  K. Okazaki Octet‐Line Node Structure of Superconducting Order Parameter in KFe2As2. , 2012 .

[16]  A. Fujimori,et al.  Doping evolution of the electronic structure in the single-layer cuprate Bi 2 Sr 2 − x La x Cu O 6 + δ : Comparison with other single-layer cuprates , 2008, 0801.0782.

[17]  T. Xiang,et al.  Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. , 2013, Nature materials.

[18]  Lin Zhao,et al.  Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a ð Tl , 2011 .

[19]  Z. Hussain,et al.  Fermi surface reconstruction in the CDW state of CeTe3 observed by photoemission. , 2004, Physical review letters.

[20]  K. Watanabe,et al.  Absorption Coefficients of Oxygen in the Vacuum Ultraviolet , 1953 .

[21]  Zahid Hussain,et al.  Phase competition in trisected superconducting dome , 2012, Proceedings of the National Academy of Sciences.

[22]  D. Feng,et al.  The orbital characters and kz dispersions of bands in iron-pnictide NaFeAs , 2011 .

[23]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[24]  C. Jozwiak,et al.  Vacuum space charge effect in laser-based solid-state photoemission spectroscopy , 2010, 1001.1989.

[25]  L. Kipp,et al.  Vacuum space-charge effects in solid-state photoemission , 2009 .

[26]  Z. K. Liu,et al.  Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 , 2013, Nature.

[27]  M. Aeschlimann,et al.  Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source , 2006 .

[28]  T. Togashi,et al.  Orbital-Independent Superconducting Gaps in Iron Pnictides , 2011, Science.

[29]  T. Togashi,et al.  A versatile system for ultrahigh resolution, low temperature, and polarization dependent laser-angle-resolved photoemission spectroscopy. , 2008, The Review of scientific instruments.

[30]  G. Bjorklund,et al.  Effects of focusing on third-order nonlinear processes in isotropic media. [laser beam interactions , 1975 .

[31]  X. H. Chen,et al.  Out-of-plane momentum and symmetry-dependent energy gap of the pnictide Ba0.6K0.4Fe2As2 superconductor revealed by angle-resolved photoemission spectroscopy. , 2010, Physical review letters.

[32]  S. Harris,et al.  The effect of linewidth on the efficiency of two-photon-pumped frequency converters , 1976 .

[33]  Z. Shen,et al.  Fermi Surface Evolution Across Multiple Charge Density Wave Transitions in ErTe3 , 2008, 0809.2832.

[34]  Takashi Takahashi,et al.  High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy. , 2007, The Review of scientific instruments.

[35]  Z. Hussain,et al.  Observation of temperature-induced crossover to an orbital-selective Mott phase in A(x)Fe(2-y)Se2 (A=K, Rb) superconductors. , 2012, Physical review letters.

[36]  D. Dessau,et al.  Effects, determination, and correction of count rate nonlinearity in multi-channel analog electron detectors. , 2015, The Review of scientific instruments.

[37]  P. Bernath,et al.  IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers , 2013 .

[38]  X. H. Chen,et al.  D ec 2 01 0 Heavily electron-doped electronic structure and isotropic superconducting gap in A x Fe 2 Se 2 ( A = K , Cs ) , 2011 .

[39]  X. Dai,et al.  Absence of a holelike fermi surface for the iron-based K0.8F1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy. , 2011, Physical review letters.

[40]  X. H. Chen,et al.  Nodeless superconducting gap in A(x)Fe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy. , 2010, Nature materials.

[41]  T. Sato,et al.  Rashba effect in antimony and bismuth studied by spin-resolved ARPES , 2014 .

[42]  Haijun Zhang,et al.  Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.

[43]  Z. Hussain,et al.  Observation of universal strong orbital-dependent correlation effects in iron chalcogenides , 2015, Nature Communications.

[44]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[45]  Z. Hussain,et al.  Electronic structure of the iron-based superconductor LaOFeP , 2008, Nature.

[46]  J. Sobota,et al.  Angle-Resolved Photoemission Studies of Quantum Materials , 2012 .

[47]  P. Feulner,et al.  Application of a time-of-flight spectrometer with delay-line detector for time- and angle-resolved two-photon photoemission , 2015 .

[48]  Z. Hussain,et al.  Distinctive momentum dependence of the band reconstruction in the nematic state of FeSe thin film , 2015, 1503.01556.

[49]  Masaki Uchida,et al.  A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy. , 2012, The Review of scientific instruments.

[50]  A. P. Sorini,et al.  Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition , 2010, Proceedings of the National Academy of Sciences.

[51]  ARPES experiment in fermiology of quasi-2D metals (Review Article) , 2014, 1406.2948.

[52]  E. Matthias,et al.  Two‐photon excitation of xenon atoms and dimers in the energy region of the 5p56p configuration , 1981 .

[53]  P. Laporte,et al.  Refractive index of LiF from 105 to 200 nm , 1982 .

[54]  C. Vidal Coherent VUV sources for high resolution spectroscopy. , 1980, Applied optics.

[55]  K. Hashimoto,et al.  Octet-Line Node Structure of Superconducting Order Parameter in KFe2As2 , 2012, Science.

[56]  Zhi-Xun Shen,et al.  Angle-resolved photoemission studies of the cuprate superconductors , 2002, cond-mat/0208504.

[57]  D. Nandi,et al.  A time-of-flight spectrometer for angle-resolved detection of low energy electrons in two dimensions , 2008 .

[58]  M H Berntsen,et al.  An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer. , 2011, The Review of scientific instruments.

[59]  Lin Zhao,et al.  Disappearance of nodal gap across the insulator–superconductor transition in a copper-oxide superconductor , 2013, Nature Communications.

[60]  J. Kolis,et al.  Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy. , 2014, The Review of scientific instruments.

[61]  T. Devereaux,et al.  Numerical exploration of spontaneous broken symmetries in multiorbital Hubbard models , 2014, 1408.6231.

[62]  M M Murnane,et al.  Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy. , 2007, The Review of scientific instruments.

[63]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.

[64]  D. Feng,et al.  Angle-resolved photoemission spectroscopy study on iron-based superconductors , 2013, 1307.5754.