From foe to friend: using animal toxins to investigate ion channel function.

[1]  G. Zamponi,et al.  Neuronal Voltage-Gated Calcium Channels: Structure, Function, and Dysfunction , 2014, Neuron.

[2]  Randall J. Platt,et al.  From molecular phylogeny towards differentiating pharmacology for NMDA receptor subtypes. , 2014, Toxicon : official journal of the International Society on Toxinology.

[3]  G. Cao,et al.  A Tarantula-Venom Peptide Antagonizes the TRPA1 Nociceptor Ion Channel by Binding to the S1–S4 Gating Domain , 2014, Current Biology.

[4]  E. Gouaux,et al.  X-Ray Structure of Acid-Sensing Ion Channel 1–Snake Toxin Complex Reveals Open State of a Na+-Selective Channel , 2014, Cell.

[5]  F. Findeisen,et al.  Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. , 2014, Journal of molecular biology.

[6]  D. Craik,et al.  Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2. , 2014, Angewandte Chemie.

[7]  F. Hofmann,et al.  L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. , 2014, Physiological reviews.

[8]  D. Julius,et al.  TRPV1 structures in distinct conformations reveal mechanisms of activation , 2013, Nature.

[9]  D. Julius,et al.  Structure of the TRPV1 ion channel determined by electron cryo-microscopy , 2013, Nature.

[10]  Sanjiv S Gambhir,et al.  A 18F-labeled saxitoxin derivative for in vivo PET-MR imaging of voltage-gated sodium channel expression following nerve injury. , 2013, Journal of the American Chemical Society.

[11]  D. Julius TRP channels and pain. , 2013, Annual review of cell and developmental biology.

[12]  D. Lipscombe,et al.  Control of neuronal voltage-gated calcium ion channels from RNA to protein , 2013, Trends in Neurosciences.

[13]  Brian J. Smith,et al.  Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking , 2013, Cellular and Molecular Life Sciences.

[14]  Hee-Sup Shin,et al.  T-type Ca2+ channels in normal and abnormal brain functions. , 2013, Physiological reviews.

[15]  M. Bednarek,et al.  Potency optimization of Huwentoxin-IV on hNav 1.7: A neurotoxin TTX-S sodium-channel antagonist from the venom of the Chinese bird-eating spider Selenocosmia huwena , 2013, Peptides.

[16]  E. Campbell,et al.  Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel , 2013, eLife.

[17]  G. King,et al.  Production of Recombinant Disulfide-Rich Venom Peptides for Structural and Functional Analysis via Expression in the Periplasm of E. coli , 2013, PloS one.

[18]  T. Librowski,et al.  Transient receptor potential channels - emerging novel drug targets for the treatment of pain. , 2013, Current medicinal chemistry.

[19]  K. Swartz,et al.  Exploring structure-function relationships between TRP and Kv channels , 2013, Scientific Reports.

[20]  Makoto Tsunozaki,et al.  TRPA1: A gatekeeper for inflammation. , 2013, Annual review of physiology.

[21]  D. Julius,et al.  TRPV1 Channels Are Intrinsically Heat Sensitive and Negatively Regulated by Phosphoinositide Lipids , 2013, Neuron.

[22]  Brian J. Smith,et al.  Intracellular Trafficking of the KV1.3 Potassium Channel Is Regulated by the Prodomain of a Matrix Metalloprotease* , 2013, The Journal of Biological Chemistry.

[23]  J. Kim,et al.  High Yield Production and Refolding of the Double-Knot Toxin, an Activator of TRPV1 Channels , 2012, PloS one.

[24]  P. Alewood,et al.  Targeting voltage‐gated calcium channels: developments in peptide and small‐molecule inhibitors for the treatment of neuropathic pain , 2012, British journal of pharmacology.

[25]  B. Nilius,et al.  The transient receptor potential channel TRPA1: from gene to pathophysiology , 2012, Pflügers Archiv - European Journal of Physiology.

[26]  Shigeki Iwanaga,et al.  Fluorescent saxitoxins for live cell imaging of single voltage-gated sodium ion channels beyond the optical diffraction limit. , 2012, Chemistry & biology.

[27]  William A. Catterall,et al.  Crystal structure of a voltage-gated sodium channel in two potentially inactivated states , 2012, Nature.

[28]  Jianhua He,et al.  Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel , 2012, Nature.

[29]  B. Bean,et al.  Modulation of neuronal sodium channels by the sea anemone peptide BDS-I. , 2012, Journal of neurophysiology.

[30]  S. Heinemann,et al.  Scorpion β-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes , 2012, The Journal of general physiology.

[31]  G. Erdemli,et al.  Ion channel drug discovery: challenges and future directions. , 2012, Future medicinal chemistry.

[32]  G. Mourier,et al.  G protein-coupled receptors, an unexploited animal toxin targets: Exploration of green mamba venom for novel drug candidates active against adrenoceptors. , 2012, Toxicon : official journal of the International Society on Toxinology.

[33]  K. Chandy,et al.  Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. , 2012, Toxicon : official journal of the International Society on Toxinology.

[34]  J. Kim,et al.  Solution Structure of Kurtoxin: A Gating Modifier Selective for Cav3 Voltage-Gated Ca2+ Channels , 2012, Biochemistry.

[35]  C. M. Flores,et al.  Validation of a patch clamp screening protocol that simultaneously measures compound activity in multiple states of the voltage-gated sodium channel Nav1.2. , 2011, Assay and drug development technologies.

[36]  W. Catterall,et al.  Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor , 2011, Proceedings of the National Academy of Sciences.

[37]  William A Catterall,et al.  Voltage-Gated Calcium Channels , 2011 .

[38]  W. Catterall,et al.  THE CRYSTAL STRUCTURE OF A VOLTAGE-GATED SODIUM CHANNEL , 2011, Nature.

[39]  B. Bean,et al.  Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors , 2011, The Journal of general physiology.

[40]  James O. Jackson,et al.  Common Molecular Determinants of Tarantula Huwentoxin-IV Inhibition of Na+ Channel Voltage Sensors in Domains II and IV* , 2011, The Journal of Biological Chemistry.

[41]  Jean Martínez,et al.  Peptide Neurotoxins that Affect Voltage-Gated Calcium Channels: A Close-Up on ω-Agatoxins , 2011, Toxins.

[42]  R. Latorre,et al.  Thermo-TRP channels: biophysics of polymodal receptors. , 2011, Advances in experimental medicine and biology.

[43]  James O. Jackson,et al.  The Tarantula Toxins ProTx-II and Huwentoxin-IV Differentially Interact with Human Nav1.7 Voltage Sensors to Inhibit Channel Activation and Inactivation , 2010, Molecular Pharmacology.

[44]  K. Blumenthal,et al.  Inhibition of the activation pathway of the T-type calcium channel Ca(V)3.1 by ProTxII. , 2010, Toxicon : official journal of the International Society on Toxinology.

[45]  D. Jane,et al.  Small conductance calcium-activated potassium channels: From structure to function , 2010, Progress in Neurobiology.

[46]  D. Julius,et al.  A Bivalent Tarantula Toxin Activates the Capsaicin Receptor, TRPV1, by Targeting the Outer Pore Domain , 2010, Cell.

[47]  Renza Roncarati,et al.  Screening technologies for ion channel drug discovery. , 2010, Future medicinal chemistry.

[48]  K. Swartz,et al.  Targeting voltage sensors in sodium channels with spider toxins. , 2010, Trends in pharmacological sciences.

[49]  R. Lewis,et al.  Use of Venom Peptides to Probe Ion Channel Structure and Function* , 2010, The Journal of Biological Chemistry.

[50]  J. Yamazaki,et al.  Tarantula toxin ProTx-I differentiates between human T-type voltage-gated Ca2+ Channels Cav3.1 and Cav3.2. , 2010, Journal of pharmacological sciences.

[51]  Mehdi Mobli,et al.  Venomics: a new paradigm for natural products-based drug discovery , 2010, Amino Acids.

[52]  Mirela Milescu,et al.  Interactions between lipids and voltage sensor paddles detected with tarantula toxins , 2009, Nature Structural &Molecular Biology.

[53]  A. Dolphin Calcium channel diversity: multiple roles of calcium channel subunits , 2009, Current Opinion in Neurobiology.

[54]  J. McIntosh,et al.  Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors , 2009, Acta Pharmacologica Sinica.

[55]  M. Lazdunski,et al.  Sea anemone toxins affecting potassium channels. , 2009, Progress in molecular and subcellular biology.

[56]  - Conotoxin GVIA Alters Gating Charge Movement of N-Type ( CaV 2 . 2 ) Calcium Channels , 2009 .

[57]  K. Swartz,et al.  Sensing voltage across lipid membranes , 2008, Nature.

[58]  Yucheng Xiao,et al.  JZTX-IV, a unique acidic sodium channel toxin isolated from the spider Chilobrachys jingzhao. , 2008, Toxicon : official journal of the International Society on Toxinology.

[59]  G. Cao,et al.  Phase Coupling of a Circadian Neuropeptide With Rest/Activity Rhythms Detected Using a Membrane-Tethered Spider Toxin , 2008, PLoS biology.

[60]  Martin Koltzenburg,et al.  ProTx-II, a Selective Inhibitor of NaV1.7 Sodium Channels, Blocks Action Potential Propagation in Nociceptors , 2008, Molecular Pharmacology.

[61]  E. Moczydlowski,et al.  Tarantula Huwentoxin-IV Inhibits Neuronal Sodium Channels by Binding to Receptor Site 4 and Trapping the Domain II Voltage Sensor in the Closed Configuration* , 2008, Journal of Biological Chemistry.

[62]  K. Swartz,et al.  Deconstructing voltage sensor function and pharmacology in sodium channels , 2008, Nature.

[63]  G. Bulaj Integrating the discovery pipeline for novel compounds targeting ion channels. , 2008, Current opinion in chemical biology.

[64]  F. Bezanilla,et al.  α-Scorpion Toxin Impairs a Conformational Change that Leads to Fast Inactivation of Muscle Sodium Channels , 2008, The Journal of general physiology.

[65]  H. Fozzard,et al.  Voltage-gated Na Channel Selectivity: The Role of the Conserved Domain III Lysine Residue , 2008, The Journal of general physiology.

[66]  F. Bezanilla How membrane proteins sense voltage , 2008, Nature Reviews Molecular Cell Biology.

[67]  Eduardo Perozo,et al.  Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. , 2008, Structure.

[68]  M. Quik,et al.  Subtype-selective conopeptides targeted to nicotinic receptors:Concerted discovery and biomedical applications , 2008, Channels.

[69]  E. Campbell,et al.  Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment , 2007, Nature.

[70]  A. A. Alabi,et al.  Portability of paddle motif function and pharmacology in voltage sensors , 2007, Nature.

[71]  J. Vobecký,et al.  Tarantula Toxins Interact with Voltage Sensors within Lipid Membranes , 2007, The Journal of general physiology.

[72]  David J Craik,et al.  Chemical modification of conotoxins to improve stability and activity. , 2007, ACS chemical biology.

[73]  A. C. Collins,et al.  Pharmacology of α-Conotoxin MII-Sensitive Subtypes of Nicotinic Acetylcholine Receptors Isolated by Breeding of Null Mutant Mice , 2007, Molecular Pharmacology.

[74]  R. Horn,et al.  A Cation-π Interaction Discriminates among Sodium Channels That Are Either Sensitive or Resistant to Tetrodotoxin Block* , 2007, Journal of Biological Chemistry.

[75]  M. Schaefer,et al.  TRPA1 Is Differentially Modulated by the Amphipathic Molecules Trinitrophenol and Chlorpromazine* , 2007, Journal of Biological Chemistry.

[76]  R. Norton,et al.  Solution Structure and Alanine Scan of a Spider Toxin That Affects the Activation of Mammalian Voltage-gated Sodium Channels* , 2007, Journal of Biological Chemistry.

[77]  M. Lazdunski,et al.  Peptides inhibitors of acid-sensing ion channels. , 2007, Toxicon : official journal of the International Society on Toxinology.

[78]  K. Swartz,et al.  Tarantula toxins interacting with voltage sensors in potassium channels. , 2007, Toxicon : official journal of the International Society on Toxinology.

[79]  F. Sachs,et al.  Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. , 2007, Toxicon : official journal of the International Society on Toxinology.

[80]  D. Lipscombe,et al.  Functional diversity in neuronal voltage-gated calcium channels by alternative splicing of Cavα1 , 2002, Molecular Neurobiology.

[81]  S. Griffey,et al.  Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases , 2006, Proceedings of the National Academy of Sciences.

[82]  Ellen A. Lumpkin,et al.  Spider toxins activate the capsaicin receptor to produce inflammatory pain , 2006, Nature.

[83]  J. Langston,et al.  Partial Recovery of Striatal Nicotinic Receptors in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-Lesioned Monkeys with Chronic Oral Nicotine , 2006, Journal of Pharmacology and Experimental Therapeutics.

[84]  Vladimir Yarov-Yarovoy,et al.  Structure and Function of the Voltage Sensor of Sodium Channels Probed by a β-Scorpion Toxin* , 2006, Journal of Biological Chemistry.

[85]  A. Patapoutian,et al.  Trp ion channels and temperature sensation. , 2006, Annual review of neuroscience.

[86]  E. Prommer Ziconotide: a new option for refractory pain. , 2006 .

[87]  O. Pongs,et al.  Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR , 2006, Nature.

[88]  David Julius,et al.  TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents , 2006, Cell.

[89]  D. Clapham,et al.  An introduction to TRP channels. , 2006, Annual review of physiology.

[90]  M. Quik,et al.  Striatal α6* Nicotinic Acetylcholine Receptors: Potential Targets for Parkinson's Disease Therapy , 2006, Journal of Pharmacology and Experimental Therapeutics.

[91]  Tomohiro Honma,et al.  Peptide Toxins in Sea Anemones: Structural and Functional Aspects , 2006, Marine Biotechnology.

[92]  W. Catterall,et al.  International Union of Pharmacology. XLVIII. Nomenclature and Structure-Function Relationships of Voltage-Gated Calcium Channels , 2005, Pharmacological Reviews.

[93]  Olov Sterner,et al.  Pungent products from garlic activate the sensory ion channel TRPA1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Mindell,et al.  Voltage-sensor activation with a tarantula toxin as cargo , 2005, Nature.

[95]  Bernd Nilius,et al.  Gating of TRP channels: a voltage connection? , 2005, The Journal of physiology.

[96]  S. Dib-Hajj,et al.  Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue , 2005, Pflügers Archiv.

[97]  A. Patapoutian,et al.  The Pungency of Garlic: Activation of TRPA1 and TRPV1 in Response to Allicin , 2005, Current Biology.

[98]  Su Hwan Kim,et al.  Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel. , 2005, Biochemistry.

[99]  A. Ménez,et al.  Scanning Mutagenesis of ω-Atracotoxin-Hv1a Reveals a Spatially Restricted Epitope That Confers Selective Activity against Insect Calcium Channels* , 2004, Journal of Biological Chemistry.

[100]  R. MacKinnon,et al.  Localization of the voltage-sensor toxin receptor on KvAP. , 2004, Biochemistry.

[101]  Paul Brehm,et al.  Tethering Naturally Occurring Peptide Toxins for Cell-Autonomous Modulation of Ion Channels and Receptors In Vivo , 2004, Neuron.

[102]  F. Coronas,et al.  Voltage‐dependent displacement of the scorpion toxin Ts3 from sodium channels and its implication on the control of inactivation , 2004, British journal of pharmacology.

[103]  Michael J. Marks,et al.  Analogs of α-conotoxin MII are selective for α6-containing nicotinic acetylcholine receptors , 2004 .

[104]  J. Kim,et al.  Molecular Surface of Tarantula Toxins Interacting with Voltage Sensors in Kv Channels , 2004, The Journal of general physiology.

[105]  A. Patapoutian,et al.  Noxious Cold Ion Channel TRPA1 Is Activated by Pungent Compounds and Bradykinin , 2004, Neuron.

[106]  L. Forno,et al.  Loss of α‐conotoxinMII‐ and A85380‐sensitive nicotinic receptors in Parkinson's disease striatum , 2004 .

[107]  E. Koppenhöfer,et al.  Die Wirkung von Skorpiongift auf die Ionenströme des Ranvierschen Schnürrings , 1968, Pflügers Archiv.

[108]  K. Swartz,et al.  Interaction between Extracellular Hanatoxin and the Resting Conformation of the Voltage-Sensor Paddle in Kv Channels , 2003, Neuron.

[109]  P. Bennett,et al.  Saxitoxin Is a Gating Modifier of hERG K+ Channels , 2003, The Journal of general physiology.

[110]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[111]  Peter McIntyre,et al.  ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures , 2003, Cell.

[112]  V. Garsky,et al.  Two tarantula peptides inhibit activation of multiple sodium channels. , 2002, Biochemistry.

[113]  F. Bezanilla,et al.  Tracking Voltage-dependent Conformational Changes in Skeletal Muscle Sodium Channel during Activation , 2002, The Journal of general physiology.

[114]  K. Elmslie,et al.  Rapid and Reversible Block of N-Type Calcium Channels (CaV 2.2) by ω-Conotoxin GVIA in the Absence of Divalent Cations , 2002, The Journal of Neuroscience.

[115]  G. King,et al.  Scanning Mutagenesis of a Janus-faced Atracotoxin Reveals a Bipartite Surface Patch That Is Essential for Neurotoxic Function* , 2002, The Journal of Biological Chemistry.

[116]  D. Mebs,et al.  Venomous and Poisonous Animals: A Handbook for Biologists, Toxicologists and Toxinologists, Physicians and Pharmacists , 2003 .

[117]  B. Bean,et al.  Interactions among Toxins That Inhibit N-type and P-type Calcium Channels , 2002, The Journal of general physiology.

[118]  H. Mizusawa,et al.  Novel Cav2.1 Splice Variants Isolated from Purkinje Cells Do Not Generate P-type Ca2+ Current* , 2002, The Journal of Biological Chemistry.

[119]  David Julius,et al.  Molecular Basis for Species-Specific Sensitivity to “Hot” Chili Peppers , 2002, Cell.

[120]  G. Dayanithi,et al.  Interaction of SNX482 with Domains III and IV Inhibits Activation Gating of α1E (CaV2.3) Calcium Channels , 2001 .

[121]  Zhong-Ping Feng,et al.  Residue Gly1326 of the N-type Calcium Channel α1B Subunit Controls Reversibility of ω-Conotoxin GVIA and MVIIA Block* , 2001, The Journal of Biological Chemistry.

[122]  A. Harvey,et al.  Twenty years of dendrotoxins. , 2001, Toxicon : official journal of the International Society on Toxinology.

[123]  K. Swartz,et al.  A Hot Spot for the Interaction of Gating Modifier Toxins with Voltage-Dependent Ion Channels , 2000, The Journal of general physiology.

[124]  Richard Horn,et al.  Immobilizing the Moving Parts of Voltage-Gated Ion Channels , 2000, The Journal of general physiology.

[125]  K. Swartz,et al.  Localization and Molecular Determinants of the Hanatoxin Receptors on the Voltage-Sensing Domains of a K+ Channel , 2000, The Journal of general physiology.

[126]  D. Hanck,et al.  The Role of the Putative Inactivation Lid in Sodium Channel Gating Current Immobilization , 2000, The Journal of general physiology.

[127]  I. Shimada,et al.  Solution structure of hanatoxin1, a gating modifier of voltage-dependent K(+) channels: common surface features of gating modifier toxins. , 2000, Journal of molecular biology.

[128]  Gail Mandel,et al.  Nomenclature of Voltage-Gated Sodium Channels , 2000, Neuron.

[129]  I. Johnson,et al.  Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. , 2000, Cell calcium.

[130]  P. Mermelstein,et al.  Properties of Q-Type Calcium Channels in Neostriatal and Cortical Neurons are Correlated with β Subunit Expression , 1999, The Journal of Neuroscience.

[131]  D. Hanck,et al.  The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. , 1999, Biophysical journal.

[132]  D. T. Yue,et al.  N-type calcium channel inactivation probed by gating-current analysis. , 1999, Biophysical journal.

[133]  T. Soong,et al.  Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels , 1999, Nature Neuroscience.

[134]  K. Stauderman,et al.  Structural elements in domain IV that influence biophysical and pharmacological properties of human alpha1A-containing high-voltage-activated calcium channels. , 1999, Biophysical journal.

[135]  Francisco Bezanilla,et al.  Voltage Sensors in Domains III and IV, but Not I and II, Are Immobilized by Na+ Channel Fast Inactivation , 1999, Neuron.

[136]  K. Swartz,et al.  Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin , 1998, Nature Neuroscience.

[137]  W. Catterall,et al.  Voltage Sensor–Trapping Enhanced Activation of Sodium Channels by β-Scorpion Toxin Bound to the S3–S4 Loop in Domain II , 1998, Neuron.

[138]  K. Swartz,et al.  Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Francisco Bezanilla,et al.  [19] Gating currents , 1998 .

[140]  B. Bean,et al.  Voltage-dependent inhibition of N- and P-type calcium channels by the peptide toxin omega-grammotoxin-SIA. , 1997, Molecular pharmacology.

[141]  B. Olivera,et al.  E.E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. , 1997, Molecular biology of the cell.

[142]  D. Julius,et al.  The capsaicin receptor: a heat-activated ion channel in the pain pathway , 1997, Nature.

[143]  S. Moss,et al.  A single serine residue confers tetrodotoxin insensitivity on the rat sensory‐neuron‐specific sodium channel SNS , 1997, FEBS letters.

[144]  R. Tsien,et al.  Preferential Interaction of ω-Conotoxins with Inactivated N-type Ca2+ Channels , 1997, The Journal of Neuroscience.

[145]  R. MacKinnon,et al.  Mapping the Receptor Site for Hanatoxin, a Gating Modifier of Voltage-Dependent K+ Channels , 1997, Neuron.

[146]  R. MacKinnon,et al.  Hanatoxin Modifies the Gating of a Voltage-Dependent K+ Channel through Multiple Binding Sites , 1997, Neuron.

[147]  R. Kallen,et al.  Effects of Tityus serrulatus scorpion toxin gamma on voltage-gated Na+ channels. , 1997, Circulation research.

[148]  G. Kaczorowski,et al.  Pharmacology of Potassium Channels , 1997, Advances in pharmacology.

[149]  W. Catterall,et al.  Molecular Determinants of High Affinity Binding of α-Scorpion Toxin and Sea Anemone Toxin in the S3-S4 Extracellular Loop in Domain IV of the Na+ Channel α Subunit* , 1996, The Journal of Biological Chemistry.

[150]  D. Yoshikami,et al.  A New -Conotoxin Which Targets 32 Nicotinic Acetylcholine Receptors (*) , 1996, The Journal of Biological Chemistry.

[151]  K. Campbell,et al.  Association of Native Ca Channel Subunits with the Subunit Interaction Domain (*) , 1995, The Journal of Biological Chemistry.

[152]  C. Miller,et al.  The charybdotoxin family of K+ channel-blocking peptides , 1995, Neuron.

[153]  C. Lévêque,et al.  Properties of ω conotoxin MVIIC receptors associated with α1A calcium channel subunits in rat brain , 1995 .

[154]  C. Wernstedt,et al.  Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. , 1995, Toxicon : official journal of the International Society on Toxinology.

[155]  R. MacKinnon,et al.  Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. , 1995, Science.

[156]  R. Tsien,et al.  Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[157]  R. Tsien,et al.  Reflections on Ca2+-channel diversity, 1988–1994 , 1995, Trends in Neurosciences.

[158]  R. Tsien,et al.  Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin , 1994, Nature.

[159]  B. Bean,et al.  omega-Conotoxin block of N-type calcium channels in frog and rat sympathetic neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[160]  R. MacKinnon,et al.  Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. , 1994, Biochemistry.

[161]  H. Fozzard,et al.  A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. , 1994, Biophysical journal.

[162]  Chul-Seung Park,et al.  Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel , 1992, Neuron.

[163]  M. Williams,et al.  Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. , 1992, Science.

[164]  B. Bean,et al.  A new conus peptide ligand for mammalian presynaptic Ca2+ channels , 1992, Neuron.

[165]  Michael E. Adams,et al.  P-type calcium channels in rat central and peripheral neurons , 1992, Neuron.

[166]  M. Adams,et al.  P-type calcium channels blocked by the spider toxin ω-Aga-IVA , 1992, Nature.

[167]  Mark E. Williams,et al.  Structure and functional expression of α 1, α 2, and β subunits of a novel human neuronal calcium channel subtype , 1992, Neuron.

[168]  S. Snyder,et al.  Erratum: Purified ω-conotoxin GVIA receptor of rat brain resembles a dihydropyridine-sensitive L-type calcium channel (Proc. Natl. Acad. Sci. USA (December 15, 1991) 88 (11095-11099)) , 1992 .

[169]  S. Snyder,et al.  Purified omega-conotoxin GVIA receptor of rat brain resembles a dihydropyridine-sensitive L-type calcium channel. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[170]  F. Conti,et al.  Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II , 1991, FEBS letters.

[171]  R. MacKinnon Determination of the subunit stoichiometry of a voltage-activated potassium channel , 1991, Nature.

[172]  G. Strichartz,et al.  Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. , 1991, Toxicon : official journal of the International Society on Toxinology.

[173]  W. Catterall,et al.  Localization of the receptor site for alpha-scorpion toxins by antibody mapping: implications for sodium channel topology. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[174]  J. Wells,et al.  High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. , 1989, Science.

[175]  R. Llinás,et al.  Voltage‐Dependent Calcium Conductances in Mammalian Neurons , 1989 .

[176]  W. Catterall,et al.  Site of covalent attachment of alpha-scorpion toxin derivatives in domain I of the sodium channel alpha subunit. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[177]  R. MacKinnon,et al.  Mechanism of charybdotoxin block of the high-conductance, Ca2+- activated K+ channel , 1988, The Journal of general physiology.

[178]  R. MacKinnon,et al.  Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength , 1988, The Journal of general physiology.

[179]  R. Tsien,et al.  Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[180]  J. McIntosh,et al.  Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. , 1987, Biochemistry.

[181]  H. Rochat,et al.  Purification and chemical and biological characterizations of seven toxins from the Mexican scorpion, Centruroides suffusus suffusus. , 1987, The Journal of biological chemistry.

[182]  P. Bougis,et al.  Use of high performance liquid chromatography to demonstrate quantitative variation in components of venom from the scorpion Androctonus australis Hector. , 1987, Toxicon : official journal of the International Society on Toxinology.

[183]  F. Hofmann,et al.  Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel , 1986, Nature.

[184]  B. Olivera,et al.  Calcium channel antagonists. Omega-conotoxin defines a new high affinity site. , 1986, The Journal of biological chemistry.

[185]  R. Latorre,et al.  Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle , 1985, Nature.

[186]  J. McIntosh,et al.  Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. , 1984, Biochemistry.

[187]  H. Reuter Calcium channel modulation by neurotransmitters, enzymes and drugs , 1983, Nature.

[188]  J. Miller,et al.  Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. , 1983, Biochemistry.

[189]  W. Catterall,et al.  The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits. , 1982, The Journal of biological chemistry.

[190]  H. Glossmann,et al.  Identification of putative calcium channels in skeletal muscle microsomes , 1982, FEBS letters.

[191]  H. Rochat,et al.  Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. , 1982, Toxicon : official journal of the International Society on Toxinology.

[192]  G. Ahnert-Hilger,et al.  Delayed haemolytic action of palytoxin. General characteristics. , 1981, Biochimica et biophysica acta.

[193]  W. Catterall,et al.  Purification of the saxitoxin receptor of the sodium channel from rat brain. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[194]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[195]  R. Barchi,et al.  Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[196]  H. Rochat,et al.  Scorpion toxin: specific binding to rat synaptosomes. , 1978, Biochemical and biophysical research communications.

[197]  S. Levinson,et al.  Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[198]  B. Hille The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. , 1975, Biophysical journal.

[199]  M. Cahalan Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculpturatus scorpion venom. , 1975, The Journal of physiology.

[200]  H. Schmidt,et al.  Effect of scorpion venom on ionic currents of the node of ranvier: II. Unvollstndige Natrium-Inaktivierung , 1968 .

[201]  H. Schmidt,et al.  [Effect of scorpion venom on ionic currents of the node of Ranvier. I. The permeabilities PNa and PK]. , 1968, Pflugers Archiv : European journal of physiology.

[202]  JOHN W. Moore,et al.  Comparison of Tetrodotoxin and Procaine in Internally Perfused Squid Giant Axons , 1967, The Journal of general physiology.

[203]  JOHN W. Moore,et al.  Tetrodotoxin Blockage of Sodium Conductance Increase in Lobster Giant Axons , 1964, The Journal of general physiology.

[204]  R. Woodward,et al.  The structure of tetrodotoxin , 1964 .

[205]  C. Y. Lee,et al.  ISOLATION OF NEUROTOXINS FROM THE VENOM OF BUNGARUS MULTICINCTUS AND THEIR MODES OF NEUROMUSCULAR BLOCKING ACTION. , 1963, Archives internationales de pharmacodynamie et de therapie.

[206]  T. Furukawa,et al.  Effects of tetrodotoxin on the neuromuscular junction. , 1959, The Japanese journal of physiology.

[207]  A. Hodgkin,et al.  The dual effect of membrane potential on sodium conductance in the giant axon of Loligo , 1952, The Journal of physiology.

[208]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.