Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species

We developed a fast, integrative pipeline to identify cis natural antisense transcripts (cis-NATs) at genome scale. The pipeline mapped mRNAs and ESTs in UniGene to genome sequences in GoldenPath to find overlapping transcripts and combining information from coding sequence, poly(A) signal, poly(A) tail and splicing sites to deduce transcription orientation. We identified cis-NATs in 10 eukaryotic species, including 7830 candidate sense–antisense (SA) genes in 3915 SA pairs in human. The abundance of SA genes is remarkably low in worm and does not seem to be caused by the prevalence of operons. Hundreds of SA pairs are conserved across different species, even maintaining the same overlapping patterns. The convergent SA class is prevalent in fly, worm and sea squirt, but not in human or mouse as reported previously. The percentage of SA genes among imprinted genes in human and mouse is 24–47%, a range between the two previous reports. There is significant shortage of SA genes on Chromosome X in human and mouse but not in fly or worm, supporting X-inactivation in mammals as a possible cause. SA genes are over-represented in the catalytic activities and basic metabolism functions. All candidate cis-NATs can be downloaded from .

[1]  Lincoln D Stein,et al.  Conservation and functional significance of gene topology in the genome of Caenorhabditis elegans. , 2006, Genome research.

[2]  Virginia Walbot,et al.  Comparative profiling of the sense and antisense transcriptome of maize lines , 2006, Genome Biology.

[3]  Lei Liu,et al.  In silico discovery of human natural antisense transcripts , 2006, BMC Bioinformatics.

[4]  O. Borsani,et al.  Endogenous siRNAs Derived from a Pair of Natural cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis , 2005, Cell.

[5]  Leonard Lipovich,et al.  Abundant novel transcriptional units and unconventional gene pairs on human chromosome 22. , 2005, Genome research.

[6]  Laurence D. Hurst,et al.  Evidence for a preferential targeting of 3′-UTRs by cis-encoded natural antisense transcripts , 2005, Nucleic acids research.

[7]  Tao Cai,et al.  Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary , 2005, Bioinform..

[8]  K. Nieselt,et al.  Open reading frames provide a rich pool of potential natural antisense transcripts in fungal genomes , 2005, Nucleic acids research.

[9]  S. Batalov,et al.  Antisense Transcription in the Mammalian Transcriptome , 2005, Science.

[10]  H. Spencer,et al.  A census of mammalian imprinting. , 2005, Trends in genetics : TIG.

[11]  A. Hartemink,et al.  Genome-wide prediction of imprinted murine genes. , 2005, Genome research.

[12]  L. Hurst,et al.  Genome-wide analysis of coordinate expression and evolution of human cis-encoded sense-antisense transcripts. , 2005, Trends in genetics : TIG.

[13]  G. Helt,et al.  Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution , 2005, Science.

[14]  Y. Hayashizaki,et al.  Naturally occurring antisense RNA of histone H2a in mouse cultured cell lines , 2005, BMC Genetics.

[15]  Mariza de Andrade,et al.  Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson's Disease , 2005, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[16]  Sergio Verjovski-Almeida,et al.  As antisense RNA gets intronic. , 2005, Omics : a journal of integrative biology.

[17]  R. Mcinnes,et al.  Natural antisense transcripts associated with genes involved in eye development. , 2005, Human molecular genetics.

[18]  Terry Gaasterland,et al.  Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana , 2005, Genome Biology.

[19]  M. Sioud,et al.  Systematic search for natural antisense transcripts in eukaryotes (review). , 2005, International journal of molecular medicine.

[20]  S. Duga,et al.  In vivo RNA–RNA duplexes from human α3 and α5 nicotinic receptor subunit mRNAs , 2005 .

[21]  Kimberly Van Auken,et al.  WormBase: a comprehensive data resource for Caenorhabditis biology and genomics , 2004, Nucleic Acids Res..

[22]  Madeline A. Crosby,et al.  FlyBase: genes and gene models , 2004, Nucleic Acids Res..

[23]  David Botstein,et al.  GO: : TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes , 2004, Bioinform..

[24]  S. H. Munroe,et al.  Diversity of antisense regulation in eukaryotes: Multiple mechanisms, emerging patterns , 2004, Journal of cellular biochemistry.

[25]  Sergio Verjovski-Almeida,et al.  Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer , 2004, Oncogene.

[26]  D. Lancet,et al.  Is the G72/G30 locus associated with schizophrenia? single nucleotide polymorphisms, haplotypes, and gene expression analysis , 2004, Biological Psychiatry.

[27]  G. Soldà,et al.  Shedding Light on the Dark Side of the Genome: Overlapping Genes in Higher Eukaryotes , 2004 .

[28]  Jonathan Schug,et al.  Widespread distribution of antisense transcripts in the Plasmodium falciparum genome. , 2004, Molecular and biochemical parasitology.

[29]  Sanghyuk Lee,et al.  ASmodeler: gene modeling of alternative splicing from genomic alignment of mRNA, EST and protein sequences , 2004, Nucleic Acids Res..

[30]  S. Crosthwaite,et al.  Circadian clocks and natural antisense RNA , 2004, FEBS Letters.

[31]  Michal Galdzicki,et al.  Mammalian overlapping genes: the comparative perspective. , 2004, Genome research.

[32]  Ben Lehner,et al.  In search of antisense. , 2004, Trends in biochemical sciences.

[33]  I. Dunham,et al.  DNA sequence and analysis of human chromosome 9 , 2003, Nature.

[34]  Yoshihide Hayashizaki,et al.  Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. , 2003, Genome research.

[35]  Yoshihide Hayashizaki,et al.  Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling. , 2003, Genome research.

[36]  Erez Y. Levanon,et al.  Widespread occurrence of antisense transcription in the human genome , 2003, Nature Biotechnology.

[37]  Gordon G. Carmichael,et al.  Antisense starts making more sense , 2003, Nature Biotechnology.

[38]  D. Gautheret,et al.  Sequence determinants in human polyadenylation site selection , 2003, BMC Genomics.

[39]  Michael Ashburner,et al.  Annotation of the Drosophila melanogaster euchromatic genome: a systematic review , 2002, Genome Biology.

[40]  E. Birney,et al.  Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs , 2002, Nature.

[41]  Jay Shendure,et al.  Computational discovery of sense-antisense transcription in the human and mouse genomes , 2002, Genome Biology.

[42]  Jean Thierry-Mieg,et al.  A global analysis of Caenorhabditis elegans operons , 2002, Nature.

[43]  D. Higgins,et al.  Overlapping Antisense Transcription in the Human Genome , 2002, Comparative and functional genomics.

[44]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[45]  Ben Lehner,et al.  Antisense transcripts in the human genome. , 2002, Trends in genetics : TIG.

[46]  T A Gray,et al.  Phylogenetic conservation of the makorin-2 gene, encoding a multiple zinc-finger protein, antisense to the RAF1 proto-oncogene. , 2001, Genomics.

[47]  L. Hillier,et al.  Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. , 2001, Genome research.

[48]  V. Solovyev,et al.  Analysis of canonical and non-canonical splice sites in mammalian genomes. , 2000, Nucleic acids research.

[49]  D. Gautheret,et al.  Patterns of variant polyadenylation signal usage in human genes. , 2000, Genome research.

[50]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[51]  M. Lazar,et al.  Post-transcriptional Regulation of Thyroid Hormone Receptor Expression by cis-Acting Sequences and a Naturally Occurring Antisense RNA* , 2000, The Journal of Biological Chemistry.

[52]  G. Rubin,et al.  A computer program for aligning a cDNA sequence with a genomic DNA sequence. , 1998, Genome research.

[53]  C. Vaquero,et al.  Do natural antisense transcripts make sense in eukaryotes? , 1998, Gene.

[54]  H. Kremer,et al.  Naturally occurring testis‐specific histone H3 antisense transcripts in Drosophila , 1997, Molecular reproduction and development.

[55]  E. Wagner,et al.  Imprinted expression of the Igf2r gene depends on an intronic CpG island , 1997, Nature.

[56]  G. Sutton,et al.  Gene and alternative splicing annotation with AIR. , 2005, Genome research.

[57]  S. Duga,et al.  In vivo RNA-RNA duplexes from human alpha3 and alpha5 nicotinic receptor subunit mRNAs. , 2005, Gene.

[58]  Michael O'Shea,et al.  Natural Antisense RNAs in the Nervous System , 2005, Reviews in the neurosciences.

[59]  Sinead B. O'Leary,et al.  DNA sequence and analysis of human chromosome 18 , 2005, Nature.

[60]  Xiaoqiu Huang,et al.  Over 20% of human transcripts might form sense-antisense pairs. , 2004, Nucleic acids research.

[61]  Damian Smedley,et al.  Ensembl 2004 , 2004, Nucleic Acids Res..

[62]  Tin Wee Tan,et al.  Xpro: database of eukaryotic protein-encoding genes , 2004, Nucleic Acids Res..

[63]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[64]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology , 2003, Nucleic Acids Res..

[65]  W. Reik,et al.  Genomic imprinting: parental influence on the genome , 2001, Nature Reviews Genetics.

[66]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..