The role of visual and physiological refuges in humic lakes: Effects of oxygen, light quantity, and spectral composition on daytime depth of chaoborids

[1]  P. Nõges,et al.  Do organic matter metrics included in lake surveillance monitoring in Europe provide a broad picture of brownification and enrichment with oxygen consuming substances? , 2018, The Science of the total environment.

[2]  J. Read,et al.  Ecosystem Consequences of Changing Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future Challenges , 2015, Ecosystems.

[3]  L. Tranvik,et al.  Sensitivity of freshwaters to browning in response to future climate change , 2015, Climatic Change.

[4]  C. Brönmark,et al.  Foraging efficiency and prey selectivity in a visual predator: differential effects of turbid and humic water , 2013 .

[5]  L. Nurminen,et al.  Troubled by the humics — effects of water colour and interspecific competition on the feeding efficiency of planktivorous perch , 2012 .

[6]  L. Nurminen,et al.  Diet shifts and food selection of perch Perca fluviatilis and roach Rutilus rutilus in humic lakes of varying water colour. , 2010, Journal of fish biology.

[7]  L. Nurminen,et al.  Perch production in forest lakes: the contribution of abiotic and biotic factors , 2010 .

[8]  L. Nurminen,et al.  Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats , 2009, Hydrobiologia.

[9]  Shigeto Oda,et al.  Diel vertical migration patterns in two populations of Chaoborus flavicans larvae (Diptera: Chaoboridae) in response to fish kairomones , 2008 .

[10]  W. Lampert,et al.  Physiological and visual refuges in a metalimnion: an experimental study of effects of clay turbidity and an oxygen minimum on fish predation , 2008 .

[11]  L. Nurminen,et al.  The intensity and spectral composition of upwelling light in relation to the density of Chaoborus flavicans swarms , 2007 .

[12]  Jonathan J. Cole,et al.  Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes , 2007 .

[13]  K. Donner,et al.  Visual pigments of Baltic Sea fishes of marine and limnic origin , 2007, Visual Neuroscience.

[14]  M. Stratton,et al.  The Role of Light and Oxygen in Chaoborus punctipennis (Insecta: Diptera) Diel Vertical Migration , 2007 .

[15]  J. Shapiro Biomanipulation: the next phase — making it stable , 1990, Hydrobiologia.

[16]  J. Horppila,et al.  Effects of clay turbidity and light on the predatorprey interaction between smelts and chaoborids , 2004 .

[17]  T. Hrabik,et al.  Light intensity, prey detection and foraging mechanisms of age 0 year yellow perch , 2004 .

[18]  C. Cerco,et al.  Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth , 2001, Hydrobiologia.

[19]  M. Hosomi,et al.  Significance of a low oxygen layer for a Daphnia population in Lake Yunoko, Japan , 1989, Hydrobiologia.

[20]  N. Hairston,et al.  Predator driven changes in community structure , 1988, Oecologia.

[21]  B. Wissel,et al.  Plasticity of vertical distribution of crustacean zooplankton in lakes with varying levels of water colour , 2003 .

[22]  Wiebke J. Boeing,et al.  Effects of water color on predation regimes and zooplankton assemblages in freshwater lakes , 2003 .

[23]  J. Horppila,et al.  The supremacy of invertebrate predators over fish: factors behind the unconventional seasonal dynamics of cladocerans in Lake Hiidenvesi , 2003 .

[24]  D. L. Parrish,et al.  Habitat Selection of Predator and Prey: Atlantic Salmon and Rainbow Smelt Overlap, Based on Temperature and Dissolved Oxygen , 2002 .

[25]  H. Mumm,et al.  Where to stay by night and day: Size-specific and seasonal differences in horizontal and vertical distribution of Chaoborus flavicans larvae , 1999 .

[26]  A. C. Utne-Palm The effect of prey mobility, prey contrast, turbidity and spectral composition on the reaction distance of Gobiusculus flavescens to its planktonic prey , 1999 .

[27]  N. Yan,et al.  Chaoborus behavioural responses to changes in fish density , 1999 .

[28]  B. Wissel,et al.  Contrasting effects of the invertebrate predator Chaoborus obscuripes and planktivorous fish on plankton communities of a long term biomanipulation experiment , 1998 .

[29]  S. Masson,et al.  Spatial distribution of zooplankton biomass size fractions in a bog lake: abiotic and (or) biotic regulation? , 1998 .

[30]  K. Irvine Food selectivity and diel vertical distribution of Chaoborus edulis (Diptera, Chaoboridae) in Lake Malawi , 1997 .

[31]  Piotr Dawidowicz,et al.  Trade-offs in diel vertical migration by zooplankton: The costs of predator avoidance , 1994 .

[32]  J. Kirk Light and photosynthesis in aquatic ecosystems: Index to organisms , 1994 .

[33]  W. Lampert Ultimate causes of diel vertical migration of zooplankton: New evidence for the predator-avoidance hypothesis , 1993 .

[34]  Piotr Dawidowicz,et al.  Vertical migration of Chaoborus larvae is induced by the presence of fish , 1990 .

[35]  J. Shapiro,et al.  Refuge availability: a key to understanding the summer disappearance of Daphnia , 1990 .

[36]  C. Hawryshyn,et al.  Behavioural studies of fish vision: an analysis of visual capabilities , 1990 .

[37]  I. Wagner-Döbler Vertical migration of Chaoborus flavicans (Diptera, Chaoboridae): The control of day and night depth by environmental parameters , 1988, Archiv für Hydrobiologie.

[38]  Andrew Sih,et al.  Prey refuges and predator prey stability , 1987 .

[39]  J. Magnuson,et al.  Predicting the Vertical Distribution of Fish Populations: Analysis of Cisco, Coregonus artedii, and Yellow Perch, Perca flavescens , 1985 .

[40]  N. E. Cameron The photopic spectral sensitivity of a dichromatic teleost fish (perca fluviatilis) , 1982, Vision Research.

[41]  G. Howick,et al.  Visual predation by planktivores , 1978 .

[42]  J. Thorpe Morphology, Physiology, Behavior, and Ecology of Perca fluviatilis L. and P. flavescens Mitchill , 1977 .

[43]  W. J. O'brien,et al.  Effects of Light and Turbidity on the Reactive Distance of Bluegill (Lepomis macrochirus) , 1976 .

[44]  M. C. Swift Energetics of Vertical Migration in Chaoborus Trivittatus Larvae , 1976 .

[45]  John C. Davis Minimal Dissolved Oxygen Requirements of Aquatic Life with Emphasis on Canadian Species: a Review , 1975 .

[46]  B. Stott,et al.  The reactions of roach [Rutilus rutilus (L.)] to changes in the concentration of dissolved oxygen and free carbon dioxide in a laboratory channel☆ , 1973 .

[47]  S. Parma The morphology of the larval instars of Chaoborus flavicans (Meigen, 1818) (Diptera, Chaoboridae) , 1971 .

[48]  A. Hasler,et al.  Echo Sounder Studies on Diel Vertical Movements of Chaoborus Larvae in Wisconsin (U.S.A.) Lakes: With 7 figures in the text , 1966 .

[49]  J. S. Alabaster,et al.  The effect of diurnal changes in temperature, dissolved oxygen and illumination on the behaviour of roach (Rutilus rutilus (L.)), bream (Abramis brama (L.)) and perch (Perca fluviatilis (L.)) , 1961 .