Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation

We propose a new method to compensate exactly for both chromatic dispersion and self-phase modulation in a transmission fiber, where the light intensity changes due to fiber loss and amplifier gain. This method utilizes optical phase conjugation (OPC). The pulse shape is precompensated before OPC by transmission through a fiber with large dispersion. A computer simulation demonstrates effective compensation for waveform distortion in a 40 Gb/s NRZ intensity-modulated light transmission.

[1]  S. Watanabe,et al.  Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation , 1993, IEEE Photonics Technology Letters.

[2]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[3]  K. Kikuchi,et al.  Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugator , 1994 .

[4]  F. Ouellette Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. , 1987, Optics letters.

[5]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[6]  R. M. Derosier,et al.  10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion , 1993, IEEE Photonics Technology Letters.

[7]  B R Suydam,et al.  Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects. , 1983, Optics letters.

[8]  T. Chikama,et al.  Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation , 1993, IEEE Photonics Technology Letters.

[9]  John Lehrer Zyskind,et al.  40 Gb/s WDM Transmission of Eight 5 Gb/s Data Channels Over Transoceanic Distances using the Conventional NRZ Modulation Format , 1995 .

[10]  Jay M. Wiesenfeld,et al.  Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber , 1992 .

[11]  A. Yariv,et al.  Compensation for phase distortions in nonlinear media by phase conjugation. , 1980, Optics letters.

[12]  T. Kato,et al.  Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light. , 1995, Optics letters.

[13]  W A Reed,et al.  Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation. , 1993, Optics letters.

[14]  Thomas L Koch,et al.  Dispersion compensation by active predistorted signal synthesis , 1985 .

[15]  A Yariv,et al.  Compensation for channel dispersion by nonlinear optical phase conjugation. , 1979, Optics letters.

[16]  Masashi Onishi,et al.  Dispersion compensating fibre with a high figure of merit of 250ps/nm/dB , 1994 .

[17]  Dirk Breuer,et al.  Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier , 1994 .

[18]  T. Chikama,et al.  Generation of optical phase-conjugate waves and compensation for pulse shape distortion in a single-mode fiber , 1994 .

[19]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[20]  Robert M. Jopson,et al.  10-Gb/s 360-km Transmission Over Normal-Dispersion Fiber Using Mid-system Spectral Inversion , 1993 .

[21]  K. Kikuchi,et al.  Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugator , 1994, IEEE Photonics Technology Letters.