Satyendra Nath Bose and nanophotonics

Abstract. This paper is devoted to the 90th anniversary of the 1924 publication of the seminal paper by Bose titled “Planck’s law and the hypothesis on light quanta” (Zeitschrift für Physik 26, 178–181). The paper has been the cornerstone quantum statistical physics. Remarkably, the very starting idea is the discreteness of phase space expressed in the form of the density of states. Bose considered equilibrium electromagnetic radiation as gas of photons and, therefore, introduced the photon density of states notion into the physics though without using directly the term “density of states.” Today, engineering photon density of states to modify light-matter interaction in nanostructures including both spontaneous emission and spontaneous scattering of photons constitutes the solid part of nanophotonics.

[1]  Sergey V. Gaponenko,et al.  Introduction to Nanophotonics: Introduction , 2010 .

[2]  A ug 2 01 0 Spontaneous decay of an emitter ’ s excited state near a finite-length metallic carbon nanotube , 2010 .

[3]  P. Dirac The Quantum Theory of the Emission and Absorption of Radiation , 1927 .

[4]  James G. Fleming,et al.  Experimental observation of photonic-crystal emission near a photonic band edge , 2003 .

[5]  Daniel Kleppner,et al.  Inhibited Spontaneous Emission , 1981 .

[6]  Masayuki Fujita,et al.  Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals , 2005, Science.

[7]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[8]  Y. Yamamoto,et al.  Semiconductor Cavity Quantum Electrodynamics , 2000 .

[9]  S. V. Zhukovsky,et al.  Constraints on transmission, dispersion, and density of states in quarter-wave multilayers and stepwise potential barriers of arbitrary geometry , 2007 .

[10]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[11]  M. Planck,et al.  Entropie und Temperatur strahlender Wärme , 1900 .

[12]  V. P. Bykov Radiation of atoms in a resonant environment , 1994 .

[13]  Kurt Busch,et al.  Theory of fluorescence in photonic crystals , 2002 .

[14]  Michael Scalora,et al.  Electromagnetic density of modes for a finite-size three-dimensional structure. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Q-Han Park,et al.  Optical antennas and plasmonics , 2009, 0901.2162.

[16]  Mulk Raj Anand,et al.  A Personal Recollection , 1993 .

[17]  Paul Adrien Maurice Dirac,et al.  On the Theory of quantum mechanics , 1926 .

[18]  M. Planck,et al.  Über eine Verbesserung der Wienschen Spektralgleichung , 1978 .

[19]  E. Yablonovitch,et al.  Photonic band structure: The face-centered-cubic case. , 1989, Physical review letters.

[20]  J. Raimond,et al.  Observation of cavity-enhanced single-atom spontaneous emission , 1983 .

[21]  P. Mataloni,et al.  Anomalous spontaneous emission time in a microscopic optical cavity. , 1987, Physical review letters.

[22]  Stefan Enoch,et al.  Simple layer-by-layer photonic crystal for the control of thermal emission , 2005 .

[23]  Niels Bohr,et al.  On the Constitution of Atoms and Molecules , 2016 .

[24]  M. Planck Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum , 1900 .

[25]  Li,et al.  Spontaneous emission from photonic crystals: full vectorial calculations , 2000, Physical review letters.

[26]  K. Ohtaka Energy band of photons and low-energy photon diffraction , 1979 .

[27]  E. Tkalya Spontaneous emission probability for M1 transition in a dielectric medium: 229mTh(3/2+, 3.5±1.0 eV) decay , 2000 .

[28]  Albert Einstein,et al.  Strahlungs-Emission und ­Absorption nach der Quantentheorie , 1916 .

[29]  W. Xue Giant Lamb shift in photonic crystals , 2005 .

[30]  Enrico Fermi,et al.  Quantum Theory of Radiation , 1932 .

[31]  Andrea Chiappini,et al.  Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals , 2012 .

[32]  Barnett,et al.  Sum Rule for Modified Spontaneous Emission Rates. , 1996, Physical review letters.

[33]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[34]  Sergey V. Gaponenko,et al.  Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal , 1998 .

[35]  J. Lakowicz,et al.  Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure. , 2014, Analytical biochemistry.

[36]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[37]  B. Gu,et al.  Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps. , 2002, Physical review letters.

[38]  G. Placzek,et al.  Rayleigh-Streuung und Raman-Effekt , 1934 .

[39]  Zubairy,et al.  Spontaneous radiation and lamb shift in three-dimensional photonic crystals , 2000, Physical review letters.

[40]  Spontaneous decay of excited atomic states near a carbon nanotube. , 2002, Physical review letters.

[41]  V. Podolskiy,et al.  Hyperbolic metamaterials: new physics behind a classical problem. , 2013, Optics express.

[42]  O. Martin,et al.  Engineering the optical response of plasmonic nanoantennas. , 2008, Optics express.

[43]  M. Planck,et al.  Die physikalische Struktur des Phasenraumes , 1916 .

[44]  Sergey V. Gaponenko,et al.  Possible effects of redistributed photon density of states on Raman scattering enhancement in mesoscopic structures , 2002, Saratov Fall Meeting.

[45]  D. Guzatov,et al.  RADIATIVE DECAY ENGINEERING BY TRIAXIAL NANOELLIPSOIDS , 2004, quant-ph/0409089.

[46]  M. Moskovits,et al.  Surface-enhanced raman scattering : physics and applications , 2006 .

[47]  M. Wegener,et al.  Periodic nanostructures for photonics , 2007 .

[48]  M. Kafesaki,et al.  Spontaneous emission in the near field of two-dimensional photonic crystals. , 2005, Optics Letters.

[49]  Fundamental quantum optics in structured reservoirs , 2000 .

[50]  J. Strutt Scientific Papers: On the Maintenance of Vibrations by Forces of Double Frequency, and on the Propagation of Waves through a Medium endowed with a Periodic Structure , 2009 .

[51]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[52]  K. Drexhage Influence of a dielectric interface on fluorescence decay time , 1970 .

[53]  A. Einstein Quantentheorie des einatomigen idealen Gases , 2006 .

[54]  Jean-Claude Weeber,et al.  Relationship between scanning near-field optical images and local density of photonic states , 2001 .

[55]  Bose Plancks Gesetz und Lichtquantenhypothese , 1924 .

[56]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[57]  Shi-Yao Zhu,et al.  Spontaneous emission from a two-level atom in a three-dimensional photonic crystal , 2000 .

[58]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[59]  M. Planck Über irreversible Strahlungsvorgänge , 1978 .

[60]  Z. Jacob,et al.  Quantum nanophotonics using hyperbolic metamaterials , 2012, 1204.5529.

[61]  Vladimir P. Bykov Spontaneous Emission in a Periodic Structure , 1972 .

[62]  S. M. Dutra,et al.  Cavity quantum electrodynamics : the strange theory of light in a box , 2004 .

[63]  John E. Sipe,et al.  Dipole radiation near hyperbolic metamaterials: Applicability of effective medium approximation , 2011, CLEO 2011.

[64]  O. Zhuromskyy,et al.  Applicability of Effective Medium Approximations to Modelling of Mesocrystal Optical Properties , 2016 .

[65]  E. Fermi,et al.  Zur Quantelung des idealen einatomigen Gases , 1926 .

[66]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .