Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals

Abstract The free carrier concentration of the Sb2−xInxTe3, Bi2−xInxTe3 and Bi2Te3−xSx crystals has been determined from the values of the Hall constants and the free carrier concentration of the Sb2−xTlxTe3 has been calculated from the plasma resonance frequency; with increasing value of x, the hole concentration decreases. As the incorporation of the elements In, Tl and S into the lattice Sb2Te3 or Bi2Te3, respectively, gives rise to the uncharged defects InxSb, TlxSb, InxBi and SxTe, the x causes the decrease of the antisite defects concentration. The proven effect is explained in the following way: the antisite defects can be created only in crystals whose atoms are bound by weakly polarized bonds. The incorporation of In, Tl and S atoms into the crystal lattice of Sb2Te3 or Bi2Te3 increases the bond polarity, the ionicity of ternary crystals increases. This unfavorably affects the increase of antisite defects whose concentration decreases. The change of the bond polarity is considered from the changes discovered in the formation energy of antisite defects of the above mentioned ternary crystals.

[1]  J. Horák,et al.  Properties of Sb2Te3, Single Crystals Doped with Tl Atoms , 1985 .

[2]  G. R. Miller,et al.  Evidence for the existence of antistructure defects in bismuth telluride by density measurements , 1964 .

[3]  V. A. Kutasov,et al.  Der Einfluß von überschüssigem antistrukturellem Bi auf die Wärmeleitfähigkeit des Kristallgitters von Bi2Te3, Bi2Te3-Sb2Te3 und Bi2Te3-Bi2S3 mit Jodbeimischung , 1966, November 1.

[4]  A. Rosenberg,et al.  Solid solutions of In2Te3 in Sb2Te3 and Bi2Te3 , 1961 .

[5]  L. Beneš,et al.  Suppression of antistructural defects in crystals by an increased polarization of bonds , 1984 .

[6]  E. Anastassakis,et al.  Anisotropy and dispersion of coupled plasmon-LO-phonon modes in Sb2Te3 , 1982 .

[7]  M. Stordeur Investigation of the Weak-Field Charge Transport in Semiconducting V2—VI3 Compounds with Trigonal Symmetry I. Expanded Model for the Transport Coefficients , 1984 .

[8]  M. Stordeur,et al.  Nichtparabolizität des valenzbandes von Bi2Te3 gefolgert aus transporteigenschaften , 1975 .

[9]  R. F. Brebrick Homogeneity ranges and Te2-pressure along the three-phase curves for Bi2Te3(c) and a 55–58 at.% Te, peritectic phase , 1968 .

[10]  M. Stordeur,et al.  Investigation of the Weak‐Field Charge Transport in Semiconducting V2−VI3 Compounds with Trigonal Symmetry II. Interpretation of the Weak‐Field Charge Transport in Sb2Te3 Single Crystals , 1984 .

[11]  L. Koudelka,et al.  Some Physical Properties and Point Defects in Bi2 Te3−xSx Mixed Crystals , 1983 .

[12]  L. Koudelka,et al.  Inversion of conductivity type in Bi2Te3−xSx crystals , 1985 .