Obtaining split graphs by edge contraction

We study the parameterized complexity of the following Split Contraction problem: Given a graph G, and an integer k as parameter, determine whether G can be modified into a split graph by contracting at most k edges. We show that Split Contraction can be solved in FPT time 2 O ( k 2 ) n 5 , but admits no polynomial kernel unless NP ? coNP / poly .

[1]  Leizhen Cai,et al.  Contracting Few Edges to Remove Forbidden Induced Subgraphs , 2013, IPEC.

[2]  Petr A. Golovach,et al.  Parameterized complexity of three edge contraction problems with degree constraints , 2014, Acta Informatica.

[3]  Jianer Chen,et al.  A 2k kernel for the cluster editing problem , 2012, J. Comput. Syst. Sci..

[4]  Yixin Cao,et al.  Interval Deletion Is Fixed-Parameter Tractable , 2012, SODA.

[5]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[6]  Fahad Panolan,et al.  Faster Parameterized Algorithms for Deletion to Split Graphs , 2012, SWAT.

[7]  Saket Saurabh,et al.  On the Hardness of Eliminating Small Induced Subgraphs by Contracting Edges , 2013, IPEC.

[8]  Petr A. Golovach,et al.  Obtaining planarity by contracting few edges , 2013, Theor. Comput. Sci..

[9]  Dániel Marx,et al.  A faster FPT algorithm for Bipartite Contraction , 2013, Inf. Process. Lett..

[10]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[11]  Marcin Pilipczuk,et al.  D S ] 6 A ug 2 01 2 On fixed-parameter algorithms for S PLIT , 2014 .

[12]  Petr A. Golovach,et al.  Parameterized Complexity of Two Edge Contraction Problems with Degree Constraints , 2013, IPEC.

[13]  Pim van 't Hof,et al.  Obtaining a Bipartite Graph by Contracting Few Edges , 2011, FSTTCS.

[14]  Petr A. Golovach,et al.  Increasing the minimum degree of a graph by contractions , 2011, Theor. Comput. Sci..

[15]  Pim van 't Hof,et al.  Contracting Graphs to Paths and Trees , 2011, Algorithmica.

[16]  Jiong Guo,et al.  Problem Kernels for NP-Complete Edge Deletion Problems: Split and Related Graphs , 2007, ISAAC.

[17]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[18]  Tao Jiang,et al.  Phylogenetic k-Root and Steiner k-Root , 2000, ISAAC.