A general comparative study of the multiplicative homomorphic, log-ratio and logarithmic image processing approaches

Abstract This article presents a comparative study of the multiplicative homomorphic image processing (MHIP), the log-ratio image processing (LRIP) and the logarithmic image processing (LIP). These three image processing approaches are based on abstract linear mathematics and provide specific operations and structures that have opened up new pathways to the development of image processing techniques. The MHIP approach was designed for the processing of multiplied images, the LRIP approach was introduced to overcome the out-of-range problem associated with many image processing techniques, while the LIP approach was developed for the processing of images valued in a bounded intensity range. First, it is claimed that an image processing framework must be physically relevant, mathematically consistent, computationally tractable and practically fruitful. It is also pointed out that the classical linear image processing (CLIP) is not adapted to non-linear and/or bounded range images or imaging systems, such as transmitted light images, practical digital images or the human brightness perception system. Then, the importance and usefulness of several mathematical fields, such as abstract linear algebra and abstract analysis, for image representation and processing within such image settings are discussed. Third, the MHIP, LRIP and LIP approaches are presented, focusing on their distinctive ideas, structures and properties for image representation and processing, rather than an in-depth review. Next, a study of the relationships and differences between their image representations and basic algebraic operations is detailed. Finally, a general comparative discussion is developed, showing the main physical, mathematical, computational and practical characteristics of these three abstract-linear-mathematics-based image processing approaches, and summarizing their respective advantages and disadvantages. It is concluded and highlighted through real application examples in both image enhancement and edge detection areas that the LIP approach surpasses the two other approaches, although, from a strictly practical point of view, a detailed quantitative comparative study on real applications is now necessary.

[1]  John Edward Hafstrom Introduction to analysis and abstract algebra , 1967 .

[2]  D.P. Skinner,et al.  The cepstrum: A guide to processing , 1977, Proceedings of the IEEE.

[3]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  M Jourlin,et al.  Three‐dimensional electron microscopy of entire cells , 1990, Journal of microscopy.

[5]  Sankar K. Pal,et al.  Edge detection based on human visual response , 1988 .

[6]  M L Giger,et al.  Application of the EM algorithm to radiographic images. , 1992, Medical physics.

[7]  Jae S. Lim,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[8]  Isao Yamada,et al.  An optimal design for a homomorphic deconvolution system , 1992, IEEE Trans. Signal Process..

[9]  R. W. Hornbeck Numerical Methods , 1975 .

[10]  Jean-Charles Pinoli Metrics, scalar product and correlation adapted to logarithmic images , 1992 .

[11]  Philip John Higgins First Course in Abstract Algebra , 1975 .

[12]  J. Pinoli,et al.  Justifications physiques et applications du modèle LIP pour le traitement des images obtenues en lumière transmise , 1996 .

[13]  D. Myers Digital Signal ProcessingEfficient Convolution and Fourier Transform Techniques , 1990 .

[14]  Alan V. Oppenheim,et al.  Signal analysis by homomorphic prediction , 1976 .

[15]  O. Faugeras Digital color image processing within the framework of a human visual model , 1979 .

[16]  Efim Khalimsky Finite, primitive and euclidean spaces , 1988 .

[17]  Gustav Theodor Fechner,et al.  Elements of psychophysics , 1966 .

[18]  A. Kolmogorov,et al.  Éléments de la théorie des fonctions et de l'analyse fonctionnelle , 1994 .

[19]  G. Fechner Elemente der Psychophysik , 1998 .

[20]  D. Jameson,et al.  The perception of brightness and darkness , 1970 .

[21]  D. H. Kelly Image-Processing Experiments , 1961 .

[22]  R. E. Stong,et al.  Finite topological spaces , 1966 .

[23]  R. P. Johnson,et al.  Contrast based edge detection , 1990, Pattern Recognit..

[24]  D. Baylor,et al.  Responses of retinal rods to single photons. , 1979, The Journal of physiology.

[25]  M. H. Pirenne,et al.  VISION AND THE EYE , 1949 .

[26]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[27]  I. Gordon Theories of Visual Perception , 1989 .

[28]  Thomas G. Stockham,et al.  Toward the unification of three visual laws and two visual models in brightness perception , 1989, IEEE Trans. Syst. Man Cybern..

[29]  William F. Schreiber,et al.  Fundamentals of electronic imaging systems : some aspects of image processing , 1986 .

[30]  L. Shen,et al.  Linear Algebra , 1968 .

[31]  E. Peli Contrast in complex images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[32]  W. L. Van,et al.  Report no. 3 , 1873 .

[33]  Sankar K. Pal,et al.  A note on grey level-intensity transformation: effect on HVS thresholding , 1988, Pattern Recognit. Lett..

[34]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[35]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[36]  Guang Deng,et al.  Low-bit-rate image coding using sketch image and JBIG , 1995, Electronic Imaging.

[37]  A. Oppenheim SUPERPOSITION IN A CLASS OF NONLINEAR SYSTEMS , 1965 .

[38]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[39]  Larry S. Davis,et al.  Noisy image restoration by cost function minimization , 1985, Pattern Recognit. Lett..

[40]  Philippe Gremillet Reconstruction et visualisation de surfaces et de volumes en microscopie électronique à transmission et en microscopie confocale , 1992 .

[41]  J. Pinoli Contribution a la modelisation, au traitement et a l'analyse d'image , 1987 .

[42]  Bhabatosh Chanda,et al.  Some algorithms for image enhancement incorporating human visual response , 1984, Pattern Recognit..

[43]  M Jourlin,et al.  LIP‐model‐based three‐dimensional reconstruction and visualization of HIV‐infected entire cells , 1994, Journal of microscopy.

[44]  Werner Frei,et al.  Image Enhancement by Histogram Hyperbolization , 1977 .

[45]  J. Pinoli A contrast definition for logarithmic images in the continuous setting , 1991 .

[46]  A. W. Roscoe,et al.  Concepts of digital topology , 1992 .

[47]  A. Oppenheim Speech analysis-synthesis system based on homomorphic filtering. , 1969, The Journal of the Acoustical Society of America.

[48]  David J. Sakrison,et al.  The effects of a visual fidelity criterion of the encoding of images , 1974, IEEE Trans. Inf. Theory.

[49]  Maryellen L. Giger,et al.  Quantitative performance evaluation of the EM algorithm applied to radiographic images , 1991, Electronic Imaging.

[50]  Michael Bass,et al.  Handbook of optics , 1995 .

[51]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[52]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[53]  F C Billingsley,et al.  Applications of digital image processing. , 1970, Applied optics.

[54]  Bernard Laget,et al.  2 - Segmentation d'images par utilisation de pyramides à bases locales , 1993 .

[55]  Jean-Charles Pinoli,et al.  Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model , 1995, Signal Process..

[56]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[57]  Azriel Rosenfeld,et al.  Picture Processing by Computer , 1969, CSUR.

[58]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .

[59]  Jr. Thomas G. Stockham,et al.  Image processing in the context of a visual model , 1972 .

[60]  L. E. Krueger Reconciling Fechner and Stevens: Toward a unified psychophysical law , 1989, Behavioral and Brain Sciences.

[61]  Pierre-André Farine,et al.  A novel homomorphic processing of ultrasonic echoes for layer thickness measurement , 1992, IEEE Trans. Signal Process..

[62]  Jan J. Koenderink,et al.  A mechanistic approach to threshold behavior of the visual system , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[63]  G. R. Tobin,et al.  The study of logarithmic image processing model and its application to image enhancement , 1995, IEEE Trans. Image Process..

[64]  A. Ralston A first course in numerical analysis , 1965 .

[65]  Sankar K. Pal,et al.  Thresholding for edge detection using human psychovisual phenomena , 1986, Pattern Recognit. Lett..

[66]  W. Pratt,et al.  Digital image restoration under a regression model , 1975 .

[67]  Maryellen L. Giger,et al.  Evaluating the EM algorithm for image processing using a human visual fidelity criterion , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[68]  Jean-Charles Pinoli,et al.  A model for logarithmic image processing , 1988 .

[69]  M Jourlin,et al.  Contrast definition and contour detection for logarithmic images , 1989, Journal of microscopy.

[70]  Shmuel Peleg,et al.  Inversion of picture operators , 1987, Pattern Recognit. Lett..

[71]  L. S. G. Kovasznay,et al.  Image Processing , 1955, Proceedings of the IRE.

[72]  A.K. Jain,et al.  Advances in mathematical models for image processing , 1981, Proceedings of the IEEE.

[73]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.

[74]  Guang Deng,et al.  The logarithmic image processing model and its applications , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[75]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[76]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[77]  D.J. Granrath,et al.  The role of human visual models in image processing , 1981, Proceedings of the IEEE.

[78]  Thomas Fortin,et al.  Dental surgery planning tool for low-cost imaging workstations , 1992, 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[79]  T. Yung Kong,et al.  A topological approach to digital topology , 1991 .

[80]  A. Oppenheim,et al.  Nonlinear filtering of multiplied and convolved signals , 1968 .

[81]  Guang Deng,et al.  Multiscale image enhancement using the logarithmic image processing model , 1993 .

[82]  J. T. Stockham The application of generalized linearity to automatic gain control , 1968 .