Global distribution of particle phase state in atmospheric secondary organic aerosols

[1]  P. Rasch,et al.  Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol , 2017, Proceedings of the National Academy of Sciences.

[2]  A. Bertram,et al.  Lability of secondary organic particulate matter , 2016, Proceedings of the National Academy of Sciences.

[3]  E. Robinson,et al.  Mixing of secondary organic aerosols versus relative humidity , 2016, Proceedings of the National Academy of Sciences.

[4]  J. Lelieveld,et al.  Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets , 2016 .

[5]  T. Petäjä,et al.  New particle formation in the free troposphere: A question of chemistry and timing , 2016, Science.

[6]  I. Riipinen,et al.  The role of low-volatility organic compounds in initial particle growth in the atmosphere , 2016, Nature.

[7]  U. Pöschl,et al.  Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols , 2016 .

[8]  A. Bertram,et al.  Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest , 2016 .

[9]  J. Reid,et al.  Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation? , 2015 .

[10]  J. Pankow Phase considerations in the gas/particle partitioning of organic amines in the atmosphere , 2015 .

[11]  Martin Gallagher,et al.  Observation of viscosity transition in α -pinene secondary organic aerosol , 2015 .

[12]  T. Koop,et al.  Glass formation processes in mixed inorganic/organic aerosol particles. , 2015, The journal of physical chemistry. A.

[13]  I. Riipinen,et al.  Adsorptive uptake of water by semisolid secondary organic aerosols , 2015 .

[14]  U. Pöschl,et al.  Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. , 2015, Chemical reviews.

[15]  U. Pöschl,et al.  Size dependence of phase transitions in aerosol nanoparticles , 2015, Nature Communications.

[16]  D. P. Stone The Intergovernmental Panel on Climate Change (IPCC) , 2015 .

[17]  J. Lelieveld,et al.  ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere , 2014 .

[18]  J. Jimenez,et al.  Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010 , 2014 .

[19]  U. Pöschl,et al.  Competition between water uptake and ice nucleation by glassy organic aerosol particles , 2014 .

[20]  Gabriele Curci,et al.  The AeroCom evaluation and intercomparison of organic aerosol in global models , 2014, Atmospheric Chemistry and Physics.

[21]  J. Seinfeld,et al.  Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol , 2014 .

[22]  A. Godt,et al.  Glass-forming properties of 3-methylbutane-1,2,3-tricarboxylic acid and its mixtures with water and pinonic acid. , 2014, The journal of physical chemistry. A.

[23]  A. Laskin,et al.  Physical properties of ambient and laboratory‐generated secondary organic aerosol , 2014 .

[24]  H. Kjaergaard,et al.  A large source of low-volatility secondary organic aerosol , 2014, Nature.

[25]  R. Harrison,et al.  Chemical Reactivity and Long-Range Transport Potential of Polycyclic Aromatic Hydrocarbons. A review. , 2014 .

[26]  U. Pöschl,et al.  Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. , 2013, Faraday discussions.

[27]  B. Murray,et al.  Quantifying water diffusion in high-viscosity and glassy aqueous solutions using a Raman isotope tracer method , 2013 .

[28]  L. Poulain,et al.  Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign , 2013 .

[29]  John H. Seinfeld,et al.  Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation , 2013, Proceedings of the National Academy of Sciences.

[30]  J. Seinfeld,et al.  Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology. , 2013, Physical chemistry chemical physics : PCCP.

[31]  J. Reid,et al.  The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles , 2013 .

[32]  A. Bertram,et al.  Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity , 2013, Proceedings of the National Academy of Sciences.

[33]  J. Seinfeld,et al.  Equilibration timescale of atmospheric secondary organic aerosol partitioning , 2012 .

[34]  A. Zelenyuk,et al.  Synergy between secondary organic aerosols and long-range transport of polycyclic aromatic hydrocarbons. , 2012, Environmental science & technology.

[35]  A. Zuend,et al.  Liquid‐liquid phase separation in aerosol particles: Dependence on O:C, organic functionalities, and compositional complexity , 2012 .

[36]  S. Martin,et al.  Phase of atmospheric secondary organic material affects its reactivity , 2012, Proceedings of the National Academy of Sciences.

[37]  P. Ziemann,et al.  Kinetics, products, and mechanisms of secondary organic aerosol formation. , 2012, Chemical Society reviews.

[38]  S. Martin,et al.  Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon , 2012, Science.

[39]  Douglas R. Worsnop,et al.  The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed‐phase cloud formation , 2012 .

[40]  A. Bertram,et al.  Images reveal that atmospheric particles can undergo liquid–liquid phase separations , 2012, Proceedings of the National Academy of Sciences.

[41]  J. Seinfeld,et al.  Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation , 2012 .

[42]  D. Dabdub,et al.  Nonequilibrium atmospheric secondary organic aerosol formation and growth , 2012, Proceedings of the National Academy of Sciences.

[43]  U. Pöschl,et al.  Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water , 2011 .

[44]  A. Bertram,et al.  Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component , 2011 .

[45]  Ulrich Pöschl,et al.  Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. , 2011, Physical chemistry chemical physics : PCCP.

[46]  P. Massoli,et al.  Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA) , 2011 .

[47]  S. Pandis,et al.  Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set , 2011 .

[48]  Ulrich Pöschl,et al.  Gas uptake and chemical aging of semisolid organic aerosol particles , 2011, Proceedings of the National Academy of Sciences.

[49]  B. Luo,et al.  Ultra-slow water diffusion in aqueous sucrose glasses. , 2011, Physical chemistry chemical physics : PCCP.

[50]  A. Zelenyuk,et al.  Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol , 2011, Proceedings of the National Academy of Sciences.

[51]  Y. H. Zhang,et al.  Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles , 2010 .

[52]  Ulrich Pöschl,et al.  An amorphous solid state of biogenic secondary organic aerosol particles , 2010, Nature.

[53]  U. Pöschl,et al.  Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon , 2010, Science.

[54]  I. Barmpadimos,et al.  Relating hygroscopicity and composition of organic aerosol particulate matter , 2010 .

[55]  J. Jimenez,et al.  Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B , 2010 .

[56]  J. Lelieveld,et al.  Global distribution of the effective aerosol hygroscopicity parameter for CCN activation , 2010 .

[57]  M. Schnaiter,et al.  Supplementary information for ‘ Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions ’ , 2010 .

[58]  D. R. Worsnop,et al.  Evolution of Organic Aerosols in the Atmosphere , 2009, Science.

[59]  S. Martin,et al.  Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity , 2009 .

[60]  Claudia Marcolli,et al.  Do atmospheric aerosols form glasses , 2008 .

[61]  Douglas R. Worsnop,et al.  Laboratory and Ambient Particle Density Determinations using Light Scattering in Conjunction with Aerosol Mass Spectrometry , 2007 .

[62]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[63]  Mark Lawrence,et al.  The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere , 2006 .

[64]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[65]  John H. Seinfeld,et al.  Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds , 2006 .

[66]  A L Robinson,et al.  Coupled partitioning, dilution, and chemical aging of semivolatile organics. , 2006, Environmental science & technology.

[67]  Bruno C. Hancock,et al.  The Relationship Between the Glass Transition Temperature and the Water Content of Amorphous Pharmaceutical Solids , 1994, Pharmaceutical Research.

[68]  C. Angell Entropy and Fragility in Supercooling Liquids , 1997, Journal of research of the National Institute of Standards and Technology.

[69]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[70]  Y. Roos Melting and glass transitions of low molecular weight carbohydrates , 1993 .