Robustly stabilizing controllers for dissipative infinite-dimensional systems with collocated actuators and sensors

We derive formulas for normalized doubly coprime factorizations over H"~ for a class of nonexponentially stabilizable systems. Using these results, we solve the problem of robust stabilization with respect to normalized coprime factor perturbations for a class of infinite-dimensional systems @S(A,B,B^*,D), with finite-rank inputs and outputs and dissipative operator A; these systems are not exponentially stabilizable. We give a parameterization of controllers that achieve a given robustness margin.

[1]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[2]  Y. You Dynamical boundary control of two-dimensional Petrovsky system: vibrating rectangular plate , 1988 .

[3]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[4]  Keith Glover,et al.  Robust control design using normal-ized coprime factor plant descriptions , 1989 .

[5]  R. Rebarber Conditions for the equivalence of internal and external stability for distributed parameter systems , 1993, IEEE Trans. Autom. Control..

[6]  Ruth F. Curtain,et al.  The Nehari problem for nonexponentially stable systems , 1998 .

[7]  Ruth F. Curtain,et al.  Coprime factorization for regular linear systems , 1996, Autom..

[8]  S. Power Hankel Operators on Hilbert Space , 1980 .

[9]  T. Bailey,et al.  Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .

[10]  Ruth F. Curtain,et al.  Riccati Equations for Strongly Stabilizable Bounded Linear Systems , 1998, Autom..

[11]  O. Staffans Quadratic optimal control of stable well-posed linear systems , 1997 .

[12]  T. Georgiou,et al.  Optimal robustness in the gap metric , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[13]  Claude D. Benchimol,et al.  A Note on Weak Stabilizability of Contraction Semigroups , 1978 .

[14]  Ruth F. Curtain,et al.  Necessary and sufficient conditions for strong stability of distributed parameter systems , 1999 .

[15]  Ruth F. Curtain,et al.  Robust control with respect to coprime factors of infinite-dimensional positive real systems , 1992 .

[16]  Tryphon T. Georgiou,et al.  Robust stabilization in the gap metric: controller design for distributed plants , 1992 .

[17]  R. Curtain Robust stabilizability of normalized coprime factors: The infinite-dimensional case , 1990 .

[18]  Marshall Slemrod Feedback stabilization of a linear control system in Hilbert space with ana priori bounded control , 1989, Math. Control. Signals Syst..

[19]  Malcolm C. Smith On stabilization and the existence of coprime factorizations , 1989 .

[20]  Suresh M. Joshi,et al.  Control of Large Flexible Space Structures , 1989 .

[21]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[22]  A. Balakrishnan Strong stabilizability and the steady state Riccati equation , 1981 .

[23]  H. Dym,et al.  Explicit formulas for optimally robust controllers for delay systems , 1995, IEEE Trans. Autom. Control..

[24]  Riccati equations and normalized coprime factorizations for strongly stabilizable infinite-dimensional systems , 1996 .

[25]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[26]  Hartmut Logemann,et al.  Conditions for Robustness and Nonrobustness of theStability of Feedback Systems with Respect to Small Delays inthe Feedback Loop , 1996 .

[28]  A. Krall,et al.  Modeling stabilization and control of serially connected beams , 1987 .

[29]  A. V. Balakrishnan Compensator design for stability enhancement with collocated controllers , 1991 .

[30]  Ruth F. Curtain,et al.  Dynamic stabilization of regular linear systems , 1997, IEEE Trans. Autom. Control..