Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode.

We investigate the optical properties of gold nanoring (NR) dimers in both simulation and experiment. The resonance peak wavelength of gold NR dimers is strongly dependent on the polarization direction and gap distance. As the gold NR particles approach each other, exponential red shift and slight blue shift of coupled bonding (CB) mode in gold NR dimers for longitudinal and transverse polarizations are obtained. In finite element method analysis, a very strong surface plasmon coupling in the gap region of gold NR dimers is observed, whose field intensity at the gap distance of 10 nm is enhanced 23% compared to that for gold nanodisk (ND) dimers with the same diameter. In addition, plasmonic dimer system exhibits a great improvement in the sensing performance. Near-field coupling in gold NR dimers causes exponential increase in sensitivity to refractive index of surrounding medium with decreasing the gap distance. Compared with coupled dipole mode in gold ND dimers, CB mode in gold NR dimers shows higher index sensitivity. This better index sensing performance is resulted form the additional electric field in inside region of NR and the larger field enhancement in the gap region owing to the stronger coupling of collective dipole plasmon resonances for CB mode. These results pave the way to design plasmonic nanostructures for practical applications that require coupled metallic nanoparticles with enhanced electric fields.

[1]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[2]  Seung Yong Lee,et al.  Dispersion in the SERS enhancement with silver nanocube dimers. , 2010, ACS nano.

[3]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[4]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[5]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[6]  S. L. Teo,et al.  Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers. , 2011, Nano letters.

[7]  P. Nordlander,et al.  Plasmon hybridization in nanoshells with a nonconcentric core. , 2006, The Journal of chemical physics.

[8]  Younan Xia,et al.  Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. , 2010, Nano letters.

[9]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[10]  Masayuki Kanehara,et al.  Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes. , 2010, Nano letters.

[11]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[12]  John A Rogers,et al.  Optical transduction of chemical forces. , 2007, Nano letters.

[13]  Francesco De Angelis,et al.  A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. , 2008, Nano letters.

[14]  B. K. Juluri,et al.  Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography. , 2011, ACS nano.

[15]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[16]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[17]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[18]  J. Hafner,et al.  Optical properties of star-shaped gold nanoparticles. , 2006, Nano letters.

[19]  Fei Le,et al.  Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.

[20]  Christian Girard,et al.  Dual wavelength sensing based on interacting gold nanodisk trimers , 2010, Nanotechnology.

[21]  K. Crozier,et al.  Gold nanorings as substrates for surface-enhanced Raman scattering. , 2010, Optics letters.

[22]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[23]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[24]  P. Nordlander,et al.  Plasmon hybridization in spherical nanoparticles. , 2004, The Journal of chemical physics.

[25]  L. Dal Negro,et al.  Engineering photonic-plasmonic coupling in metal nanoparticle necklaces. , 2011, ACS nano.

[26]  P. Nordlander,et al.  Shedding light on dark plasmons in gold nanorings , 2008 .

[27]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[28]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[29]  A. L. Tian,et al.  A One-Pot Method to Prepare Gold Nanoparticle Chains with Chitosan , 2008 .

[30]  Kyung-Young Jung,et al.  $\hbox{Au/SiO}_{2}$ Nanoring Plasmon Waveguides at Optical Communication Band , 2007, Journal of Lightwave Technology.

[31]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[32]  R. Muller,et al.  Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. , 2010, Nano letters.

[33]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[34]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[35]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[36]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[37]  S. Retterer,et al.  Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. , 2010, Nano letters.

[38]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[39]  Colby A. Foss,et al.  The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod−Rod and Rod−Sphere Pairs , 2002 .

[40]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[41]  Jing Zhao,et al.  Localized Surface Plasmon Resonance Biosensing with Large Area of Gold Nanoholes Fabricated by Nanosphere Lithography , 2010, Nanoscale research letters.

[42]  Luca Dal Negro,et al.  Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing. , 2009, Nano letters.