Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline
暂无分享,去创建一个
Thomas Peterson | Yi Liao | Doreen Ware | Shujun Ou | Weija Su | Kapeel Chougule | Ning Jiang | Candice N. Hirsch | Matthew B. Hufford | Tyler A. Elliott | D. Ware | Shujun Ou | M. Hufford | C. Hirsch | Yi Liao | T. Peterson | K. Chougule | Ning Jiang | Weija Su | Jireh R. A. Agda | Jireh R. A. Agda | Adam J. Hellinga | Carlos Santiago Blanco Lugo | Tyler A. Elliott | Adam J. Hellinga | Carlos Santiago Blanco Lugo | Jireh Agda | J. Agda
[1] G. Benson,et al. Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.
[2] P. Barret,et al. A sequence related to rice Pong transposable element displays transcriptional activation by in vitro culture and reveals somaclonal variations in maize. , 2006, Genome.
[3] M. Lynch,et al. De novo identification of LTR retrotransposons in eukaryotic genomes , 2007, BMC Genomics.
[4] Jason S. Caronna,et al. The complete Ac/Ds transposon family of maize , 2011, BMC Genomics.
[5] Marcelo Helguera,et al. MITE Tracker: an accurate approach to identify miniature inverted-repeat transposable elements in large genomes , 2018, BMC Bioinformatics.
[6] Mark Yandell,et al. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.
[7] Nikita S. Vassetzky,et al. SINEBase: a database and tool for SINE analysis , 2012, Nucleic Acids Res..
[8] Chunguang Du,et al. HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes , 2014, Proceedings of the National Academy of Sciences.
[9] O. Kohany,et al. Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.
[10] Gordon Gremme,et al. GenomeTools: A Comprehensive Software Library for Efficient Processing of Structured Genome Annotations , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[11] Ellen J. Pritham,et al. Helitrons, the Eukaryotic Rolling-circle Transposable Elements , 2015, Microbiology spectrum.
[12] Hao Wang,et al. SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets , 2016, Bioinform..
[13] Dawn H. Nagel,et al. The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.
[14] Geoffrey C. Fox,et al. MGEScan: a Galaxy-based system for identifying retrotransposons in genomes , 2016, Bioinform..
[15] Hani Z. Girgis,et al. LtrDetector: A tool-suite for detecting long terminal repeat retrotransposons de-novo , 2019, BMC Genomics.
[16] C. Liang,et al. Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection1 , 2019, Plant Physiology.
[17] T. Flutre,et al. Considering Transposable Element Diversification in De Novo Annotation Approaches , 2011, PloS one.
[18] Miranda J. Haus,et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.) , 2013, Genome Biology.
[19] S. Wessler,et al. Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes , 2013, BMC Genomics.
[20] Susan R. Wessler,et al. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences , 2010, Nucleic acids research.
[21] S. Eddy,et al. Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.
[22] John F. McDonald,et al. LTR_STRUC: a novel search and identification program for LTR retrotransposons , 2003, Bioinform..
[23] S. Wessler,et al. PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. , 2004, Genetics.
[24] Yuri Pirola,et al. Bioconda: sustainable and comprehensive software distribution for the life sciences , 2017, Nature Methods.
[25] Ann A. Ferguson,et al. What makes up plant genomes: The vanishing line between transposable elements and genes. , 2016, Biochimica et biophysica acta.
[26] Shujun Ou,et al. LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons , 2019, Mobile DNA.
[27] T. Eickbush,et al. The diversity of retrotransposons and the properties of their reverse transcriptases. , 2008, Virus research.
[28] W. Jin,et al. ZmCCT9 enhances maize adaptation to higher latitudes , 2017, Proceedings of the National Academy of Sciences.
[29] 李佩芳. International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. , 2005 .
[30] Sean R. Eddy,et al. An active DNA transposon family in rice , 2003, Nature.
[31] S. Wessler,et al. Tracking the origin of two genetic components associated with transposable element bursts in domesticated rice , 2019, Nature Communications.
[32] Guoli Ji,et al. detectMITE: A novel approach to detect miniature inverted repeat transposable elements in genomes , 2016, Scientific Reports.
[33] Ryan E. Mills,et al. Which transposable elements are active in the human genome? , 2007, Trends in genetics : TIG.
[34] Kateryna D Makova,et al. The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important. , 2010, Genome research.
[35] X. Gu,et al. TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome. , 2019, Molecular plant.
[36] T. Peterson. Plant Transposable Elements , 2013, Methods in Molecular Biology.
[37] Hilde van der Togt,et al. Publisher's Note , 2003, J. Netw. Comput. Appl..
[38] Takuji Sasaki,et al. The map-based sequence of the rice genome , 2005, Nature.
[39] Pavel A. Pevzner,et al. De novo identification of repeat families in large genomes , 2005, ISMB.
[40] J. Bennetzen,et al. A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.
[41] Yu Zhang,et al. P-MITE: a database for plant miniature inverted-repeat transposable elements , 2013, Nucleic Acids Res..
[42] J. Bennetzen,et al. Plant retrotransposons. , 1999, Annual review of genetics.
[43] M. Yandell,et al. Genome Annotation and Curation Using MAKER and MAKER‐P , 2014, Current protocols in bioinformatics.
[44] Zhao Xu,et al. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..
[45] Alexandre P. Marand,et al. Historical Meiotic Crossover Hotspots Fueled Patterns of Evolutionary Divergence in Rice , 2019, Plant Cell.
[46] Stephen M. Mount,et al. The genome sequence of Drosophila melanogaster. , 2000, Science.
[47] Jeffrey Ross-Ibarra,et al. Identification of a functional transposon insertion in the maize domestication gene tb1 , 2011, Nature Genetics.
[48] Katharina J. Hoff,et al. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS , 2016, Bioinform..
[49] G. Bourque,et al. Computational tools to unmask transposable elements , 2018, Nature Reviews Genetics.
[50] E. Lerat. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs , 2010, Heredity.
[51] Sean R. Eddy,et al. Pack-MULE transposable elements mediate gene evolution in plants , 2004, Nature.
[52] Lixing Yang,et al. Distribution, diversity, evolution, and survival of Helitrons in the maize genome , 2009, Proceedings of the National Academy of Sciences.
[53] Xuequn Shang,et al. MiteFinderII: a novel tool to identify miniature inverted-repeat transposable elements hidden in eukaryotic genomes , 2018, BMC Medical Genomics.
[54] Cédric Feschotte,et al. Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). , 2003, Genetics.
[55] Carolyn J. Lawrence-Dill,et al. MAKER-P: A Tool Kit for the Rapid Creation, Management, and Quality Control of Plant Genome Annotations1[W][OPEN] , 2013, Plant Physiology.
[56] Travis J. Wheeler,et al. A call for benchmarking transposable element annotation methods , 2015, Mobile DNA.
[57] Jeffrey Ross-Ibarra,et al. Improved maize reference genome with single-molecule technologies , 2017, Nature.
[58] Hani Z. Girgis. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale , 2015, BMC Bioinformatics.
[59] Jonathan D. G. Jones,et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome , 2018, Science.
[60] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.
[61] Shujun Ou,et al. LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons1[OPEN] , 2017, Plant Physiology.
[62] Ruochi Zhang,et al. MUSTv2: An Improved De Novo Detection Program for Recently Active Miniature Inverted Repeat Transposable Elements (MITEs) , 2017, J. Integr. Bioinform..
[63] J. Bennetzen,et al. Structure-based discovery and description of plant and animal Helitrons , 2009, Proceedings of the National Academy of Sciences.
[64] Gary Benson,et al. Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. , 2004, Genome research.
[65] Renan Valieris,et al. Bioconda: sustainable and comprehensive software distribution for the life sciences , 2018, Nature Methods.
[66] Stefan Kurtz,et al. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.
[67] Shujun Ou,et al. Assessing genome assembly quality using the LTR Assembly Index (LAI) , 2018, Nucleic acids research.
[68] Cristian Chaparro,et al. Exceptional Diversity, Non-Random Distribution, and Rapid Evolution of Retroelements in the B73 Maize Genome , 2009, PLoS genetics.
[69] J. Jurka,et al. Rolling-circle transposons in eukaryotes , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[70] Sonja J. Prohaska,et al. Multiple sequence alignment with user-defined constraints at GOBICS , 2005, Bioinform..
[71] L. Rieseberg,et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution , 2017, Nature.
[72] S. Jackson,et al. RiTE database: a resource database for genus-wide rice genomics and evolutionary biology , 2015, BMC Genomics.
[73] B. Mcclintock. Cytogenetic Studies of Maize and Neurospora , 1945 .