Excited state nuclear forces from the Tamm–Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework

An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn–Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Tamm–Dancoff approximation are derived. The algorithms were implemented into a pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies, optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An overall good agreement with other time-dependent density functional calculations, multireference configuration interaction calculations and experimental data was found.

[1]  Dennis R. Salahub,et al.  Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study , 1996 .

[2]  H. Lischka,et al.  Geometry optimization of excited valence states of formaldehyde using analytical multireference configuration interaction singles and doubles and multireference averaged quadratic coupled-cluster gradients, and MR-AQCC gradients and the conical intersection formed by the 1{sup 1}B{sub 1}({sigma}-{pi , 2001 .

[3]  R. Amos Dipole moments in excited state DFT calculations , 2002 .

[4]  Nicholas C. Handy,et al.  On the determination of excitation energies using density functional theory , 2000 .

[5]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[6]  Mark E. Tuckerman,et al.  A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters , 1999 .

[7]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[8]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[9]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[10]  P. Bruna,et al.  Spectroscopy of Formaldehyde. 1. Ab Initio Studies on Singlet Valence and Rydberg States of Planar H2CO, with Emphasis on 1(.pi.,.pi.) and 1(.sigma.,.pi.) , 1995 .

[11]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[12]  M. Petersilka,et al.  DENSITY FUNCTIONAL THEORY OF TIME-DEPENDENT PHENOMENA , 1996 .

[13]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[14]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[15]  Evert Jan Baerends,et al.  A DFT/TDDFT interpretation of the ground and excited states of porphyrin and porphyrazine complexes , 2002 .

[16]  Carole Van Caillie,et al.  Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals , 2000 .

[17]  Christian Ochsenfeld,et al.  A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .

[18]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[19]  Paul Tavan,et al.  A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields , 1999 .

[20]  N. Doltsinis,et al.  Electronic excitation spectra from time-dependent density functional response theory using plane-wave methods , 2000 .

[21]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[22]  Luis Serrano-Andrés,et al.  Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds , 1999 .

[23]  Mark Earl Casida,et al.  In Recent Advances in Density-Functional Methods , 1995 .

[24]  W. Domcke,et al.  Ab initio potential-energy functions for excited state intramolecular proton transfer: a comparative study of o-hydroxybenzaldehyde, salicylic acid and 7-hydroxy-1-indanone , 1999 .

[25]  M. Frisch,et al.  A time-dependent density functional theory study of the electronically excited states of formaldehyde, acetaldehyde and acetone , 1998 .

[26]  ELIMINATION OF UNOCCUPIED-STATE SUMMATIONS IN AB INITIO SELF-ENERGY CALCULATIONS FOR LARGE SUPERCELLS , 1997, cond-mat/9803228.

[27]  Nicholas C. Handy,et al.  Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities , 1998 .

[28]  Trygve Helgaker,et al.  Configuration-interaction energy derivatives in a fully variational formulation , 1989 .

[29]  Roger D. Amos,et al.  Geometric derivatives of excitation energies using SCF and DFT , 1999 .

[30]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[31]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[32]  D. Clouthier,et al.  The Spectroscopy of Formaldehyde and Thioformaldehyde , 1983 .

[33]  M. Head‐Gordon,et al.  Time-dependent density functional study on the electronic excitation energies of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene, pyrene, and perylene , 1999 .

[34]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[35]  X. Gonze,et al.  Adiabatic density-functional perturbation theory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[36]  J. Duncan,et al.  The general harmonic force field of formaldehyde , 1973 .

[37]  L. D. Künne,et al.  Recent Developments and Applications of Modern Density Functional Theory , 1998 .

[38]  Daniel Sebastiani,et al.  Generalized variational density functional perturbation theory , 2000 .

[39]  W. Kohn,et al.  Time-dependent density functional theory , 1990 .

[40]  Poul Jørgensen,et al.  Geometrical derivatives of energy surfaces and molecular properties , 1986 .

[41]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[42]  Jorge M. Seminario,et al.  Recent developments and applications of modern density functional theory , 1996 .

[43]  Marco Häser,et al.  CALCULATION OF EXCITATION ENERGIES WITHIN TIME-DEPENDENT DENSITY FUNCTIONAL THEORY USING AUXILIARY BASIS SET EXPANSIONS , 1997 .

[44]  H. Lischka,et al.  Analytic MRCI gradient for excited states: formalism and application to the n-π* valence- and n-(3s,3p) Rydberg states of formaldehyde , 2002 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[47]  D. Marx Ab initio molecular dynamics: Theory and Implementation , 2000 .

[48]  Rubio,et al.  Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors. , 1996, Physical review. B, Condensed matter.

[49]  Filipp Furche,et al.  Adiabatic time-dependent density functional methods for excited state properties , 2002 .

[50]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[51]  N. Handy,et al.  Study of excited states of furan and pyrrole by time-dependent density functional theory , 2002 .

[52]  Michael J. Frisch,et al.  Toward a systematic molecular orbital theory for excited states , 1992 .

[53]  Alessandro Laio,et al.  A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations , 2002 .

[54]  N. Rösch,et al.  Density- and density-matrix-based coupled Kohn–Sham methods for dynamic polarizabilities and excitation energies of molecules , 1999 .

[55]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[56]  Filipp Furche,et al.  On the density matrix based approach to time-dependent density functional response theory , 2001 .

[57]  T. Crawford,et al.  The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities , 1993 .