A characterization of fine words over a finite alphabet

To any infinite word t over a finite alphabet A we can associate two infinite words min(t) and max(t) such that any prefix of min(t) (resp. max(t)) is the lexicographically smallest (resp. greatest) amongst the factors of t of the same length. We say that an infinite word t over A is fine if there exists an infinite word s such that, for any lexicographic order, min(t)=as where a=min(A). In this paper, we characterize fine words; specifically, we prove that an infinite word t is fine if and only if t is either a strict episturmian word or a strict ''skew episturmian word''. This characterization generalizes a recent result of G. Pirillo, who proved that a fine word over a 2-letter alphabet is either an (aperiodic) Sturmian word, or an ultimately periodic (but not periodic) infinite word, all of whose factors are (finite) Sturmian.

[1]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[2]  Giuseppe Pirillo,et al.  On a characteristic property of ARNOUX-RAUZY sequences , 2002, RAIRO Theor. Informatics Appl..

[3]  Giuseppe Pirillo,et al.  Characterizations of finite and infinite episturmian words via lexicographic orderings , 2008, Eur. J. Comb..

[4]  Giuseppe Pirillo,et al.  Episturmian Words: Shifts, Morphisms And Numeration Systems , 2004, Int. J. Found. Comput. Sci..

[5]  Amy Glen,et al.  On Sturmian and episturmian words, and related topics , 2006, Bulletin of the Australian Mathematical Society.

[6]  Amy Glen Powers in a class of A-strict standard episturmian words , 2007, Theor. Comput. Sci..

[7]  Giuseppe Pirillo,et al.  Inequalities characterizing standard Sturmian and episturmian words , 2005, Theor. Comput. Sci..

[8]  Luca Q. Zamboni,et al.  A generalization of Sturmian sequences: Combinatorial structure and transcendence , 2000 .

[9]  Laurent Vuillon,et al.  Return words in Sturmian and episturmian words , 2000, RAIRO Theor. Informatics Appl..

[10]  Gwénaël Richomme Conjugacy and episturmian morphisms , 2003, Theor. Comput. Sci..

[11]  Aldo de Luca,et al.  Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..

[12]  Giuseppe Pirillo,et al.  Episturmian words and episturmian morphisms , 2002, Theor. Comput. Sci..

[13]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[14]  Giuseppe Pirillo,et al.  Morse and Hedlund’s Skew Sturmian Words Revisited , 2008 .

[15]  Jean-Paul Allouche,et al.  Extremal properties of (epi)Sturmian sequences and distribution modulo 1 , 2009, 0907.2430.

[16]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[17]  Yiping Zhang,et al.  Some remarks on invertible substitutions on three letter alphabet , 1999 .