Limestone increased coffee yield and profitability more than phosphogypsum or their combination

[1]  J. Neves,et al.  Coffee tree (Coffea arabica L.) Response to limestone in soil with high aluminum saturation coffee-tree lime response in soil with high aluminum saturation , 2008 .

[2]  C. Cruz,et al.  Macronutrient Accumulation in Coffee Fruits at Brazilian Zona Da Mata Conditions , 2009 .

[3]  Siavosh Sadeghian-Khalajabadi,et al.  Identification of acid-tolerant coffee genotypes in a coffee germplasm collection of Colombia , 2020 .

[4]  C. Penn,et al.  Chapter One – An Important Tool With No Instruction Manual: A Review of Gypsum Use in Agriculture , 2017 .

[5]  J. Bouton,et al.  Amelioration of an acid soil profile through deep liming and surface application of gypsum , 1986 .

[6]  M. Sumner,et al.  Effects of phosphogypsum on leachate and soil chemical composition , 1988 .

[7]  Daniel Furtado Ferreira,et al.  Sisvar: a computer statistical analysis system , 2011 .

[8]  B. Raij,et al.  Calagem e adubao nitrogenada e potssica para o cafeeiro , 1996 .

[9]  M. A. Pavan,et al.  Respostas do cafeeiro à calagem , 1984 .

[10]  F. Bingham,et al.  Toxicity of Aluminum to Coffee in Ultisols and Oxisols Amended with CaCO3, MgCO3, and CaSO4·2H2O1 , 1982 .

[11]  J. M. Lima,et al.  Doses de gesso em cafeeiro: influência nos teores de cálcio, magnésio, potássio e ph na solução de um latossolo vermelho distrófico , 2013 .

[12]  E. Caires,et al.  Surface liming and nitrogen fertilization for crop grain production under no-till management in Brazil , 2015 .

[13]  M. A. Guarçoni Saturação por bases para o cafeeiro baseada no pH do solo e no suprimento de Ca e Mg , 2017 .

[14]  C. Bayer,et al.  Does gypsum increase crop grain yield on no‐tilled acid soils? A meta‐analysis , 2020 .

[15]  K. D. Ritchey,et al.  Limestone, Gypsum, and Magnesium Oxide Influence Restoration of an Abandoned Appalachian Pasture , 2002 .

[16]  M. Carneiro,et al.  High rates of agricultural gypsum affect the arbuscular mycorrhiza fungal community and coffee yield , 2020, Bragantia.

[17]  F. Bingham,et al.  Redistribution of Exchangeable Calcium, Magnesium, and Aluminum Following Lime or Gypsum Applications to a Brazilian Oxisol1 , 1984 .

[18]  B. Raij,et al.  Correlações entre o pH e o grau de saturação em bases nos solos com horizonte B textural e horizonte B latossólico , 1968 .

[19]  E. F. Caires,et al.  Alterações químicas do solo e resposta da soja ao calcário e gesso aplicados na implantação do sistema plantio direto , 2003 .

[20]  E. Caires,et al.  Surface Application of Lime for Crop Grain Production Under a No‐Till System , 2005 .

[21]  Chad J. Penn,et al.  An Important Tool With No Instruction Manual , 2017 .

[22]  F. Damatta,et al.  Ecophysiological constraints on the production of shaded and unshaded coffee: a review. , 2004 .

[23]  R. Heck,et al.  Gypsum effects on the spatial distribution of coffee roots and the pores system in oxidic Brazilian Latosol , 2015 .

[24]  O. M. Castro,et al.  Efeito da adio de diferentes fontes de clcio no movimento de ctions em colunas de solo , 1993 .

[25]  A. M. Guimarães,et al.  A Novel Phosphogypsum Application Recommendation Method under Continuous No‐Till Management in Brazil , 2018, Agronomy Journal.

[26]  M. A. Pavan,et al.  Control of soil acidity in no-tillage system for soybean production , 1996 .