Limestone increased coffee yield and profitability more than phosphogypsum or their combination
暂无分享,去创建一个
Renan J. Parecido | Rogério P. Soratto | Marcos J. Perdoná | Fernando V. C. Guidorizzi | Guilherme G. Gomes | Rodrigo A. Paula | Harun I. Gitari | R. P. Soratto | M. J. Perdoná | Harun H. Gitari | F. V. C. Guidorizzi
[1] J. Neves,et al. Coffee tree (Coffea arabica L.) Response to limestone in soil with high aluminum saturation coffee-tree lime response in soil with high aluminum saturation , 2008 .
[2] C. Cruz,et al. Macronutrient Accumulation in Coffee Fruits at Brazilian Zona Da Mata Conditions , 2009 .
[3] Siavosh Sadeghian-Khalajabadi,et al. Identification of acid-tolerant coffee genotypes in a coffee germplasm collection of Colombia , 2020 .
[4] C. Penn,et al. Chapter One – An Important Tool With No Instruction Manual: A Review of Gypsum Use in Agriculture , 2017 .
[5] J. Bouton,et al. Amelioration of an acid soil profile through deep liming and surface application of gypsum , 1986 .
[6] M. Sumner,et al. Effects of phosphogypsum on leachate and soil chemical composition , 1988 .
[7] Daniel Furtado Ferreira,et al. Sisvar: a computer statistical analysis system , 2011 .
[8] B. Raij,et al. Calagem e adubao nitrogenada e potssica para o cafeeiro , 1996 .
[9] M. A. Pavan,et al. Respostas do cafeeiro à calagem , 1984 .
[10] F. Bingham,et al. Toxicity of Aluminum to Coffee in Ultisols and Oxisols Amended with CaCO3, MgCO3, and CaSO4·2H2O1 , 1982 .
[11] J. M. Lima,et al. Doses de gesso em cafeeiro: influência nos teores de cálcio, magnésio, potássio e ph na solução de um latossolo vermelho distrófico , 2013 .
[12] E. Caires,et al. Surface liming and nitrogen fertilization for crop grain production under no-till management in Brazil , 2015 .
[13] M. A. Guarçoni. Saturação por bases para o cafeeiro baseada no pH do solo e no suprimento de Ca e Mg , 2017 .
[14] C. Bayer,et al. Does gypsum increase crop grain yield on no‐tilled acid soils? A meta‐analysis , 2020 .
[15] K. D. Ritchey,et al. Limestone, Gypsum, and Magnesium Oxide Influence Restoration of an Abandoned Appalachian Pasture , 2002 .
[16] M. Carneiro,et al. High rates of agricultural gypsum affect the arbuscular mycorrhiza fungal community and coffee yield , 2020, Bragantia.
[17] F. Bingham,et al. Redistribution of Exchangeable Calcium, Magnesium, and Aluminum Following Lime or Gypsum Applications to a Brazilian Oxisol1 , 1984 .
[18] B. Raij,et al. Correlações entre o pH e o grau de saturação em bases nos solos com horizonte B textural e horizonte B latossólico , 1968 .
[19] E. F. Caires,et al. Alterações químicas do solo e resposta da soja ao calcário e gesso aplicados na implantação do sistema plantio direto , 2003 .
[20] E. Caires,et al. Surface Application of Lime for Crop Grain Production Under a No‐Till System , 2005 .
[21] Chad J. Penn,et al. An Important Tool With No Instruction Manual , 2017 .
[22] F. Damatta,et al. Ecophysiological constraints on the production of shaded and unshaded coffee: a review. , 2004 .
[23] R. Heck,et al. Gypsum effects on the spatial distribution of coffee roots and the pores system in oxidic Brazilian Latosol , 2015 .
[24] O. M. Castro,et al. Efeito da adio de diferentes fontes de clcio no movimento de ctions em colunas de solo , 1993 .
[25] A. M. Guimarães,et al. A Novel Phosphogypsum Application Recommendation Method under Continuous No‐Till Management in Brazil , 2018, Agronomy Journal.
[26] M. A. Pavan,et al. Control of soil acidity in no-tillage system for soybean production , 1996 .