Laser tweezers for atomic solitons

We describe controllable and precise laser tweezers for Bose–Einstein condensates of ultracold atomic gases. In our configuration, a laser beam is used to locally modify the sign of the scattering length in the vicinity of a trapped BEC. The induced attractive interactions between atoms allow us to extract and transport a controllable number of atoms. We analyze, through numerical simulations, the number of emitted atoms as a function of the width and intensity of the outcoupling beam. We also study different configurations of our system, as the use of moving beams. The main advantage of using the control laser beam to modify the nonlinear interactions in comparison to the usual way of inducing optical forces, i.e. through linear trapping potentials, is to improve the controllability of the outcoupled solitary wave-packet, which opens new possibilities for engineering macroscopic quantum states.

[1]  H. Herrero,et al.  Bose-Einstein solitons in highly asymmetric traps , 1998 .

[2]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[3]  A. Aspect,et al.  Guided quasicontinuous atom laser. , 2006, Physical review letters.

[4]  Richard Haberman,et al.  Chaotic scattering and the n-bounce resonance in solitary-wave interactions. , 2007, Physical review letters.

[5]  M T Primatarowa,et al.  Interaction of solitons with extended nonlinear defects. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Hinds,et al.  Realization of a magnetic mirror for cold atoms. , 1995, Physical review letters.

[7]  C. Salomon,et al.  Formation of a Matter-Wave Bright Soliton , 2002, Science.

[8]  Víctor M. Pérez-García,et al.  Numerical methods for the simulation of trapped nonlinear Schrödinger systems , 2003, Appl. Math. Comput..

[9]  Juan Belmonte-Beitia,et al.  Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. , 2006, Physical review letters.

[10]  Bose-Einstein condensates in spatially periodic potentials , 1998 .

[11]  Mason A. Porter,et al.  Modulated amplitude waves in collisionally inhomogeneous Bose–Einstein condensates , 2006, nlin/0607009.

[12]  Pedro J. Torres,et al.  Guided waves in a multi-layered optical structure , 2006 .

[13]  Gadi Fibich,et al.  Bound states of nonlinear Schrödinger equations with a periodic nonlinear microstructure , 2006 .

[14]  H. Michinel,et al.  A ring accelerator for matter-wave solitons , 2006, cond-mat/0610047.

[15]  Phillips,et al.  A well-collimated quasi-continuous atom laser , 1999, Science.

[16]  W. Zakrzewski,et al.  Dynamical properties of a soliton in a potential well , 2006, hep-th/0610095.

[17]  G. Fibich,et al.  Waves in nonlinear lattices: ultrashort optical pulses and Bose-Einstein condensates. , 2006, Physical review letters.

[18]  M. Hellwig,et al.  Tuning the scattering length with an optically induced Feshbach resonance. , 2004, Physical review letters.

[19]  V. Pérez-García,et al.  Control of nonlinear modes by scattering-length management in Bose-Einstein condensates , 2007 .

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  Extracting atoms on demand with lasers , 2004, quant-ph/0412181.

[22]  Humberto Michinel,et al.  Controllable soliton emission from a Bose-Einstein condensate. , 2005, Physical review letters.

[23]  J. Schmiedmayer,et al.  Microscopic atom optics: from wires to an atom chip , 2008, 0805.2613.

[24]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[25]  Carl E. Wieman,et al.  Dynamics of collapsing and exploding Bose–Einstein condensates , 2001, Nature.

[26]  Randall G. Hulet,et al.  Formation and propagation of matter-wave soliton trains , 2002, Nature.

[27]  Josselin Garnier,et al.  Transmission of matter-wave solitons through nonlinear traps and barriers , 2006, cond-mat/0605261.

[28]  W. Ketterle,et al.  OPTICAL CONFINEMENT OF A BOSE-EINSTEIN CONDENSATE , 1998 .

[29]  V. Boyer,et al.  Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator , 2006 .

[30]  T. Esslinger,et al.  ATOM LASER WITH A CW OUTPUT COUPLER , 1998, cond-mat/9812258.

[31]  Grangier,et al.  Experimental realization of a quantum optical tap. , 1993, Physical review letters.

[32]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[33]  P. Leboeuf,et al.  Bose-Einstein beams: Coherent propagation through a guide , 2001 .

[34]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.

[35]  D. Pritchard,et al.  Transport of Bose-Einstein condensates with optical tweezers. , 2001, Physical review letters.

[36]  Dallin S. Durfee,et al.  Output Coupler for Bose-Einstein Condensed Atoms , 1997 .

[37]  Jianke Yang,et al.  Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  J. Vanier Atomic clocks based on coherent population trapping: a review , 2005 .

[39]  Hidetsugu Sakaguchi,et al.  Matter-wave solitons in nonlinear optical lattices. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Alicia V. Carpentier,et al.  Analysis of an atom laser based on the spatial control of the scattering length , 2006, cond-mat/0602582.

[41]  Creation of macroscopic superposition states from arrays of Bose–Einstein condensates , 2006, quant-ph/0608242.