Feedback Control of Negative-Imaginary Systems

This paper investigates the robustness of positive-position feedback control of flexible structures with colocated force actuators and position sensors. In particular, the theory of negative-imaginary systems is used to reveal the robustness properties of multi-input, multi-output (MIMO) positive-position feedback controllers and related types of controllers for flexible structures. The negative-imaginary property of linear systems can be extended to nonlinear systems through the notion of counterclockwise input-output dynamics.

[1]  Sudarshan P. Bhat,et al.  Precise Point-to-Point Positioning Control of Flexible Structures , 1990 .

[2]  Ian R. Petersen,et al.  Stability Robustness of a Feedback Interconnection of Systems With Negative Imaginary Frequency Response , 2008, IEEE Transactions on Automatic Control.

[3]  S. O. Reza Moheimani,et al.  Spatial resonant control of flexible structures-application to a piezoelectric laminate beam , 2001, IEEE Trans. Control. Syst. Technol..

[4]  I. Sandberg Some results on the theory of physical systems governed by nonlinear functional equations , 1965 .

[5]  Ian R. Petersen,et al.  Stability analysis of positive feedback interconnections of linear negative imaginary systems , 2009, 2009 American Control Conference.

[6]  JinHyoung Oh,et al.  Counterclockwise Dynamics of a Rate-Independent Semilinear Duhem Model , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[7]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[8]  Hemanshu R. Pota,et al.  Resonant controllers for smart structures , 2002 .

[9]  Dennis S. Bernstein,et al.  Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory , 2005 .

[10]  Ian R. Petersen,et al.  A modified positive-real type stability condition , 2007, 2007 European Control Conference (ECC).

[11]  Leonard Meirovitch,et al.  Elements Of Vibration Analysis , 1986 .

[12]  Brian D. O. Anderson,et al.  Network Analysis and Synthesis , 1973 .

[13]  S. O. Reza Moheimani,et al.  Integral resonant control of collocated smart structures , 2007 .

[14]  M. Balas Direct Velocity Feedback Control of Large Space Structures , 1979 .

[15]  B. Brogliato,et al.  Dissipative Systems Analysis and Control , 2000 .

[16]  T. K. Caughey,et al.  On the stability problem caused by finite actuator dynamics in the collocated control of large space structures , 1985 .

[17]  Frank L. Lewis,et al.  Shape control of flexible structure using potential field method , 2008, 2008 IEEE International Conference on Control Applications.

[18]  Louis Weinberg,et al.  Network Analysis and Synthesis , 1962 .

[19]  S. O. Reza Moheimani,et al.  Experimental implementation of extended multivariable PPF control on an active structure , 2006, IEEE Transactions on Control Systems Technology.

[20]  Ian R. Petersen,et al.  Reformulating negative imaginary frequency response systems to bounded-real systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[21]  David Angeli,et al.  Systems with counterclockwise input-output dynamics , 2006, IEEE Transactions on Automatic Control.

[22]  Ian R. Petersen,et al.  Multivariable integral control of resonant structures , 2008, 2008 47th IEEE Conference on Decision and Control.

[23]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[24]  J. L. Fanson,et al.  Positive position feedback control for large space structures , 1990 .

[25]  A. Preumont Vibration Control of Active Structures , 1997 .