A consistent rainfall parameterization based on the exponential raindrop size distribution

Abstract There exists an impressive body of experimental evidence confirming the existence of power law relationships between various rainfall related variables. Many of these variables (such as rain rate, radar reflectivity factor and kinetic energy flux density) have a direct relevance for hydrology and related disciplines (hydrometeorology, soil erosion). There is one fundamental property of rainfall which ties all these variables together, namely the raindrop size distribution. It is the purpose of this article to explain (1) that there exist two fundamentally different forms of the raindrop size distribution, (2) how various hydrologically relevant rainfall variables are related to both these forms, and (3) how the coefficients of power law relationships between such rainfall variables are determined by the parameters of these two forms of the raindrop size distribution. The classical exponential raindrop size distribution is used as an example of a family of raindrop size distributions. Three groups of rainfall related variables are considered, namely properties of individual raindrops (size, speed, volume, mass, momentum and kinetic energy), rainfall integral variables (raindrop concentration, raindrop arrival rate, liquid rainwater content, rain rate, rainfall pressure, rainfall power and radar reflectivity factor) and characteristic sizes (median-volume diameter, volume-weighted mean diameter and mean-volume diameter). Six different consistent sets of power law relationships between these rainfall related variables and rain rate are presented, based on different assumptions regarding the rain rate dependence of the parameters of the raindrop size distribution.

[1]  J. M. Porrà,et al.  A general formulation for raindrop size distribution , 1994 .

[2]  C. Brandt,et al.  The size distribution of throughfall drops under vegetation canopies , 1989 .

[3]  David Atlas,et al.  OPTICAL EXTINCTION BY RAINFALL , 1953 .

[4]  J. Smith Marked point process models of raindrop-size distributions , 1993 .

[5]  Carlton W. Ulbrich,et al.  The Effects of Drop Size Distribution Truncation on Rainfall Integral Parameters and Empirical Relations , 1985 .

[6]  Comparison of Results Obtained with the VIDIAZ Spectropluviometer and the Joss-Waldvogel Rainfall Disdrometer in a “Rain of a Thundery Type” , 1980 .

[7]  K. Beard Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft , 1976 .

[8]  Richard D. De Veaux,et al.  The temporal and spatial variability of rainfall power , 1992 .

[9]  J. M. Porrà,et al.  Experimental evidence of a general description for raindrop size distribution properties , 1998 .

[10]  Ian R. Calder,et al.  Dependence of rainfall interception on drop size: 2. Experimental determination of the wetting functions and two-layer stochastic model parameters for five tropical tree species , 1996 .

[11]  R. Cataneo,et al.  Raindrop-Size Distributions in Humid Continental Climates, and Associated Rainfall Rate-Radar Reflectivity Relationships , 1968 .

[12]  J. Creutin,et al.  Mean K-R Relationships: Practical Results for Typical Weather Radar Wavelengths , 1991 .

[13]  Carlton W. Ulbrich,et al.  Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1–3 cm Band , 1977 .

[14]  Carlton W. Ulbrich,et al.  The rain parameter diagram: Methods and applications , 1978 .

[15]  I. Calder,et al.  Dependence of rainfall interception on drop size: 3. Implementation and comparative performance of the stochastic model using data from a tropical site in Sri Lanka , 1996 .

[16]  Douglas M. A. Jones Raindrop spectra at the ground , 1992 .

[17]  Louis J. Battan,et al.  Radar Observation of the Atmosphere , 1973 .

[18]  D. Leroux,et al.  The generalized method of moments as applied to the generalized gamma distribution , 1988 .

[19]  I. Calder,et al.  Drop size modification by forest canopies: Measurements using a disdrometer , 1993 .

[20]  Ian R. Calder,et al.  Dependence of rainfall interception on drop size: 1. Development of the two-layer stochastic model , 1996 .

[21]  Robert G. Knollenberg,et al.  The Optical Array: An Alternative to Scattering or Extinction for Airborne Particle Size Determination , 1970 .

[22]  R. Rogers,et al.  A short course in cloud physics , 1976 .

[23]  J. Lorente,et al.  Modeling Raindrop Size Distribution and Z(R) Relations in the Western Mediterranean Area , 1997 .

[24]  D. L. Gerlough,et al.  Traffic flow theory : a monograph , 1975 .

[25]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[26]  J. Joss,et al.  Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung , 1967 .

[27]  Remko Uijlenhoet,et al.  Dependence of rainfall interception on drop size – a comment , 1999 .

[28]  A. Spilhaus DROP SIZE, INTENSITY, AND RADAR ECHO OF RAIN , 1948 .

[29]  O. E. Barndorff-Nielsen Stochastic methods in hydrology : rain, landforms and floods : CIMAT, Guanajuato, Mexico, March 25-28, 1996 , 1998 .

[30]  D. Fang,et al.  The Relationship between N0 and Λ for Marshall-Palmer Type Raindrop-Size Distributions , 1984 .

[31]  Henri Sauvageot,et al.  The Shape of Averaged Drop Size Distributions , 1995 .

[32]  R. Gunn,et al.  THE TERMINAL VELOCITY OF FALL FOR WATER DROPLETS IN STAGNANT AIR , 1949 .

[33]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[34]  D. L. Gerlough,et al.  Traffic flow theory : a monograph , 1975 .

[35]  Donald A. Parsons,et al.  The relation of raindrop-size to intensity , 1943 .

[36]  A. Best,et al.  The size distribution of raindrops , 1950 .

[37]  David Atlas,et al.  Sampling errors in the measurement of rain and hail parameters , 1977 .

[38]  S. Bradley,et al.  The Measurement of Charge and Size of Raindrops: Part II. Results and Analysis at Ground Level. , 1974 .

[39]  J. Joss,et al.  Shapes of Raindrop Size Distributions , 1978 .

[40]  J. S. Marshall,et al.  Advances in Radar Weather , 1955 .

[41]  Danièle Hauser,et al.  A New Method for Deducing Hydrometeor-Size Distributions and Vertical Air Motions from Doppler Radar Measurements at Vertical Incidence. , 1981 .

[42]  C. Salles,et al.  The Optical Spectropluviometer Revisited , 1998 .

[43]  C. J. Stevens,et al.  An Optical Disdrometer for the Measurement of Raindrop Size Spectra in Windy Conditions , 1987 .

[44]  S. Bradley,et al.  The Measurement of Charge and Size of Raindrops: Part I. The Disdrometer , 1974 .

[45]  R. C. Srivastava,et al.  Doppler Radar Observations of Drop-Size Distributions in a Thunderstorm , 1971 .

[46]  R. C. Srivastava,et al.  Doppler radar characteristics of precipitation at vertical incidence , 1973 .

[47]  D. Carey Erosion and Sediment Transport Monitoring Programmes in River Basins , 1994 .

[48]  J. S. Marshall,et al.  MEASUREMENT OF RAINFALL BY RADAR , 1947 .

[49]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[50]  A. Waldvogel,et al.  Raindrop Size Distribution and Sampling Size Errors , 1969 .

[51]  R. S. Lawrence,et al.  Path-Averaged Measurements of Rain Rate and Raindrop Size Distribution Using a Fast-Response Optical Sensor , 1979 .

[52]  M. Kendall,et al.  The Advanced Theory of Statistics: Vol. I—Distribution Theory , 1959 .

[53]  R. D. Veaux,et al.  A stochastic model relating rainfall intensity to raindrop processes , 1994 .

[54]  Philippe Waldteufel,et al.  A New Optical Instrument for Simultaneous Measurement of Raindrop Diameter and Fall Speed Distributions , 1984 .

[55]  I. Calder Rainfall interception and drop size-development and calibration of the two-layer stochastic interception model. , 1996, Tree physiology.