Magnetic edge states and coherent manipulation of graphene nanoribbons

[1]  M. Baumgarten,et al.  Hexa-peri-hexabenzocoronene with Different Acceptor Units for Tuning Optoelectronic Properties. , 2016, Chemistry, an Asian journal.

[2]  A. G. S. Filho,et al.  Physical properties of low-dimensional s p 2 -based carbon nanostructures , 2016 .

[3]  E. Coronado,et al.  Enhancing coherence in molecular spin qubits via atomic clock transitions , 2016, Nature.

[4]  Takashi Taniguchi,et al.  Spin Lifetimes Exceeding 12 ns in Graphene Nonlocal Spin Valve Devices. , 2016, Nano letters.

[5]  Thomas Dienel,et al.  On-surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology References and Notes , 2022 .

[6]  K. Müllen,et al.  New advances in nanographene chemistry. , 2015, Chemical Society reviews.

[7]  M. Bonn,et al.  Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. , 2014, ACS nano.

[8]  Xinliang Feng Synthesis of Structurally Well‐Defined and Liquid‐Phase‐Processable Graphene Nanoribbons. , 2014 .

[9]  S. Wessel,et al.  Quantum nature of edge magnetism in graphene. , 2013, Physical review letters.

[10]  W. Lubitz,et al.  W-band ELDOR-detected NMR (EDNMR) spectroscopy as a versatile technique for the characterisation of transition metal–ligand interactions , 2013 .

[11]  M. Brustolon,et al.  A slow relaxing species for molecular spin devices: EPR characterization of static and dynamic magnetic properties of a nitronyl nitroxide radical , 2012 .

[12]  W. Lu,et al.  Spin dynamics and relaxation in graphene nanoribbons: electron spin resonance probing. , 2012, ACS nano.

[13]  D. Pesin,et al.  Spintronics and pseudospintronics in graphene and topological insulators. , 2012, Nature materials.

[14]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[15]  P. Recher,et al.  Quantum dots and spin qubits in graphene , 2010, Nanotechnology.

[16]  G. Burkard,et al.  Effective time-reversal symmetry breaking in the spin relaxation in a graphene quantum dot , 2010, 1003.2088.

[17]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[18]  D. Loss,et al.  Hyperfine interaction and electron-spin decoherence in graphene and carbon nanotube quantum dots , 2009, 0906.2800.

[19]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[20]  S. Bottle,et al.  The vibrational group frequency of the N-O* stretching band of nitroxide stable free radicals. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[21]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[22]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[23]  A. Caneschi,et al.  The chemistry and magnetic properties of metal nitronyl nitroxide complexes , 2007 .

[24]  Oded Hod,et al.  Electronic structure and stability of semiconducting graphene nanoribbons. , 2006, Nano letters.

[25]  S. Louie,et al.  Half-metallic graphene nanoribbons , 2006, Nature.

[26]  G. Burkard,et al.  Spin qubits in graphene quantum dots , 2006, cond-mat/0611252.

[27]  J. E. Hill,et al.  Intrinsic and Rashba spin-orbit interactions in graphene sheets , 2006, cond-mat/0606504.

[28]  H. Zimmermann,et al.  DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data , 2006 .

[29]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[30]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[31]  V. Barone,et al.  Spin density in a nitronyl nitroxide free radical. Polarized neutron diffraction investigation and ab initio calculations , 1994 .

[32]  Philip W. Anderson,et al.  Spectral Diffusion Decay in Spin Resonance Experiments , 1962 .

[33]  Lee R. White,et al.  Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons , 2009 .

[34]  H. Dai,et al.  Narrow graphene nanoribbons from carbon nanotubes , 2009, Nature.

[35]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[36]  Gunnar Jeschke,et al.  Principles of pulse electron paramagnetic resonance , 2001 .

[37]  A. Schweiger,et al.  The concept of FID-detected hole-burning in pulsed EPR spectroscopy , 1992 .