Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries.

The magnetic structure and properties of polycrystalline NaFePO4 polymorphs, maricite and triphylite, both derived from the olivine structure type, have been investigated using magnetic susceptibility, heat capacity, and low-temperature neutron powder diffraction. These NaFePO4 polymorphs assume orthorhombic frameworks (space group No. 62, Pnma), built from FeO6 octahedral and PO4 tetrahedral units having corner-sharing and edge-sharing arrangements. Both polymorphs demonstrate antiferromagnetic ordering below 13 K for maricite and 50 K for triphylite. The magnetic structure and properties are discussed considering super- and supersuperexchange interactions in comparison to those of triphylite-LiFePO4.

[1]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[2]  Pierre Kubiak,et al.  Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4 , 2012 .

[3]  Yang‐Kook Sun,et al.  Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .

[4]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[5]  Jiying Li,et al.  Magnetic phase diagram of magnetoelectric LiMnPO4 , 2012 .

[6]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[7]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[8]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[9]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[10]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[11]  Yong Yang,et al.  Recent advances in the research of polyanion-type cathode materials for Li-ion batteries , 2011 .

[12]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[13]  Jiying Li,et al.  High-field magnetic phase transitions and spin excitations in magnetoelectric LiNiPO4 , 2011 .

[14]  Jiying Li,et al.  Neutron Scattering Studies of LiCoPO4 & LiMnPO4 , 2010 .

[15]  N. Kharchenko,et al.  Magnetic field induced spin reorientation in the strongly anisotropic antiferromagnetic crystal LiCoPO4 , 2010 .

[16]  M. Armand,et al.  Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. , 2010, Inorganic chemistry.

[17]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[18]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[19]  Wei Tian,et al.  Antiferromagnetism in the magnetoelectric effect single crystalLiMnPO4 , 2009, 0904.2580.

[20]  K. Lefmann,et al.  Field-induced magnetic phases and electric polarization in LiNiPO4 , 2009, 0901.2238.

[21]  G. Liang,et al.  Anisotropy in magnetic properties and electronic structure of single-crystal LiFePO4 , 2008 .

[22]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[23]  J. Tarascon,et al.  Energetics of LiFePO4 and Polymorphs of Its Delithiated Form, FePO4 , 2006 .

[24]  Jiying Li,et al.  Spin-waves in Antiferromagnetic Single-crystal LiFePO4 , 2005, cond-mat/0508480.

[25]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[26]  Christian Masquelier,et al.  Magnetic Structures of the Triphylite LiFePO4 and of Its Delithiated Form FePO4 , 2003 .

[27]  D. Vaknin,et al.  Weakly coupled antiferromagnetic planes in single-crystal LiCoPO4 , 2002 .

[28]  Sai-Cheong Chung,et al.  Crystal Chemistry of the Olivine-Type Li ( Mn y Fe1 − y ) PO 4 and ( Mn y Fe1 − y ) PO 4 as Possible 4 V Cathode Materials for Lithium Batteries , 2001 .

[29]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[30]  P. Wyder,et al.  Magnetoelectric properties of LiCoPO 4 and LiNiPO 4 , 2000 .

[31]  T. Rojo,et al.  Weakly (x=0) and randomly (x=0.033) coupled Ising antiferromagnetic planes in (Li{sub 1{minus}3x}Fe{sub x})NiPO{sub 4} compounds , 1999 .

[32]  J. Bridson,et al.  Synthesis and Crystal Structure of Maricite and Sodium Iron(III) Hydroxyphosphate , 1998 .

[33]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[34]  Arthur P. Ramirez,et al.  Strongly Geometrically Frustrated Magnets , 1994 .

[35]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[36]  O. Haas,et al.  Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review , 1990 .

[37]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[38]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[39]  R. E. Newnham,et al.  Antiferromagnetism in LiFePO4 , 1967 .

[40]  R. Newnham,et al.  Magnetic properties of LiCoPO4 and LiNiPO4 , 1966 .

[41]  R. Newnham,et al.  Neutron-diffraction study of LiMnPO4 , 1965 .

[42]  John B. Goodenough,et al.  Direct cation- -cation interactions in several oxides , 1960 .

[43]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .