An Optimal Fuzzy System for Edge Detection in Color Images Using Bacterial Foraging Algorithm

This paper presents a fuzzy system for edge detection, using smallest univalue segment assimilating nucleus (USAN) principle and bacterial foraging algorithm (BFA). The proposed algorithm fuzzifies the USAN area obtained from the original image, using a USAN area histogram-based Gaussian membership function. A parametric fuzzy intensification operator (FINT) is proposed to enhance the weak edge information, which results in another fuzzy set. The fuzzy measures, i.e., fuzzy edge quality factor and sharpness factor, are defined on fuzzy sets. The BFA is used to optimize the parameters involved in the fuzzy membership function and the FINT. The fuzzy edge map is obtained using optimized parameters. The adaptive thresholding is used to defuzzify the fuzzy edge map to obtain a binary edge map. The experimental results are analyzed qualitatively and quantitatively. The quantitative measures, i.e., Pratt's figure of merit, Cohen’ Kappa, Shannon's entropy, and edge strength similarity-based edge quality metric, are used. The quantitative results are statistically analyzed using t-test. The proposed algorithm outperforms many of the traditional and state-of-the-art edge detectors.

[1]  Humberto Bustince,et al.  Image segmentation using Atanassov's intuitionistic fuzzy sets , 2013, Expert systems with applications.

[2]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Humberto Bustince,et al.  Interval Type-2 Fuzzy Sets Constructed From Several Membership Functions: Application to the Fuzzy Thresholding Algorithm , 2013, IEEE Transactions on Fuzzy Systems.

[4]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[5]  Madasu Hanmandlu,et al.  Fuzzy Edge and Corner Detector for Color Images , 2009, 2009 Sixth International Conference on Information Technology: New Generations.

[6]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Zhou-Ping Yin,et al.  The Fast Multilevel Fuzzy Edge Detection of Blurry Images , 2007, IEEE Signal Processing Letters.

[8]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[9]  S.E. El-Khamy,et al.  Fuzzy edge detection with minimum fuzzy entropy criterion , 2002, 11th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.02CH37379).

[10]  William G. Marchal,et al.  Statistical techniques in business and economics , 1991 .

[11]  Humberto Bustince,et al.  Construction of Interval-Valued Fuzzy Relations With Application to the Generation of Fuzzy Edge Images , 2011, IEEE Transactions on Fuzzy Systems.

[12]  Isabelle Bloch Fuzzy sets in image processing , 1994, SAC '94.

[13]  Yishu Zhai,et al.  Multiscale edge detection based on fuzzy c-means clustering , 2006, 2006 1st International Symposium on Systems and Control in Aerospace and Astronautics.

[14]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.

[15]  James C. Bezdek,et al.  A geometric approach to edge detection , 1998, IEEE Trans. Fuzzy Syst..

[16]  Qiang Liu,et al.  A novel approach for edge detection based on the theory of universal gravity , 2007, Pattern Recognit..

[17]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[18]  F. Russo Edge detection in noisy images using fuzzy reasoning , 1998, IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222).

[19]  Madasu Hanmandlu,et al.  A novel fuzzy system for edge detection in noisy image using bacterial foraging , 2011, Multidimensional Systems and Signal Processing.

[20]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[21]  Xiangchu Feng,et al.  Edge Strength Similarity for Image Quality Assessment , 2013, IEEE Signal Processing Letters.

[22]  Mitra Basu,et al.  Gaussian-based edge-detection methods - a survey , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[23]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Madasu Hanmandlu,et al.  A novel bacterial foraging technique for edge detection , 2011, Pattern Recognit. Lett..

[25]  Tony White,et al.  An ant-inspired algorithm for detection of image edge features , 2011, Appl. Soft Comput..

[26]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[27]  Humberto Bustince,et al.  Generating fuzzy edge images from gradient magnitudes , 2011, Comput. Vis. Image Underst..

[28]  Madasu Hanmandlu,et al.  A Novel Optimal Fuzzy System for Color Image Enhancement Using Bacterial Foraging , 2009, IEEE Transactions on Instrumentation and Measurement.

[29]  Mongi A. Abidi,et al.  Data fusion: color edge detection and surface reconstruction through regularization , 1996, IEEE Trans. Ind. Electron..

[30]  Humberto Bustince,et al.  Multiscale edge detection based on Gaussian smoothing and edge tracking , 2013, Knowl. Based Syst..

[31]  S. Pal,et al.  Image enhancement using smoothing with fuzzy sets , 1981 .

[32]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[33]  Humberto Bustince,et al.  Interval-valued fuzzy sets constructed from matrices: Application to edge detection , 2009, Fuzzy Sets Syst..

[34]  C. Chow,et al.  Automatic boundary detection of the left ventricle from cineangiograms. , 1972, Computers and biomedical research, an international journal.

[35]  Mark Johnston,et al.  A novel particle swarm optimisation approach to detecting continuous, thin and smooth edges in noisy images , 2013, Inf. Sci..

[36]  Humberto Bustince,et al.  A gravitational approach to edge detection based on triangular norms , 2010, Pattern Recognit..

[37]  Ying Sun,et al.  A novel fuzzy entropy approach to image enhancement and thresholding , 1999, Signal Process..