Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells

[1]  S. Angulo,et al.  Retraction Notice to: Directed Conversion of Alzheimer’s Disease Patient Skin Fibroblasts into Functional Neurons , 2014, Cell.

[2]  S. Anderson,et al.  Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. , 2013, Cell stem cell.

[3]  J. Rubenstein,et al.  Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. , 2013, Cell stem cell.

[4]  Daniele Linaro,et al.  Pyramidal Neurons Derived from Human Pluripotent Stem Cells Integrate Efficiently into Mouse Brain Circuits In Vivo , 2013, Neuron.

[5]  Frank Soldner,et al.  iPSC Disease Modeling , 2012, Science.

[6]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[7]  T. Südhof,et al.  Proteasome Inhibition Alleviates SNARE-Dependent Neurodegeneration , 2012, Science Translational Medicine.

[8]  Anatol C. Kreitzer,et al.  Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. , 2012, Cell stem cell.

[9]  S. Shi,et al.  Combined small molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors , 2012, Nature Biotechnology.

[10]  F. Gage,et al.  Modeling brain disease in a dish: really? , 2012, Cell stem cell.

[11]  G. Daley,et al.  Stem cells assessed , 2012, Nature Reviews Molecular Cell Biology.

[12]  A. Polizzi,et al.  Ohtahara syndrome with emphasis on recent genetic discovery , 2012, Brain and Development.

[13]  K. Eggan,et al.  Erosion of dosage compensation impacts human iPSC disease modeling. , 2012, Cell stem cell.

[14]  Yan Sun,et al.  Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. , 2012, Cell stem cell.

[15]  F. Gage,et al.  Modeling psychiatric disorders at the cellular and network levels , 2012, Molecular Psychiatry.

[16]  Zhiping P. Pang,et al.  Distinct Neuronal Coding Schemes in Memory Revealed by Selective Erasure of Fast Synchronous Synaptic Transmission , 2012, Neuron.

[17]  Peter Kirwan,et al.  Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses , 2012, Nature Neuroscience.

[18]  Marius Wernig,et al.  Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells , 2012, Proceedings of the National Academy of Sciences.

[19]  Kristopher L. Nazor,et al.  Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells , 2012, Nature.

[20]  D. Surmeier,et al.  Floor plate-derived dopamine neurons from hESCs efficiently engraft in animal models of PD , 2011, Nature.

[21]  Hui-Li Wang,et al.  Decrease in Calcium Concentration Triggers Neuronal Retinoic Acid Synthesis during Homeostatic Synaptic Plasticity , 2011, The Journal of Neuroscience.

[22]  T. Südhof,et al.  Induced neuronal cells: how to make and define a neuron. , 2011, Cell stem cell.

[23]  A. Muotri,et al.  Cellular Reprogramming: Recent Advances in Modeling Neurological Diseases , 2011, The Journal of Neuroscience.

[24]  Morgan L. Maeder,et al.  In Situ Genetic Correction of the Sickle Cell Anemia Mutation in Human Induced Pluripotent Stem Cells Using Engineered Zinc Finger Nucleases , 2011, Stem cells.

[25]  O. Lindvall,et al.  Efficient induction of functional neurons from adult human fibroblasts , 2011, Cell cycle.

[26]  Kevin Eggan,et al.  Conversion of mouse and human fibroblasts into functional spinal motor neurons. , 2011, Cell stem cell.

[27]  S. Yamanaka,et al.  Induced pluripotent stem cells: opportunities and challenges , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  Maria Teresa Dell'Anno,et al.  Direct generation of functional dopaminergic neurons from mouse and human fibroblasts , 2011, Nature.

[29]  Li Li,et al.  MicroRNA-mediated conversion of human fibroblasts to neurons , 2011, Nature.

[30]  Ulrich Pfisterer,et al.  Direct conversion of human fibroblasts to dopaminergic neurons , 2011, Proceedings of the National Academy of Sciences.

[31]  Thomas Vierbuchen,et al.  Induction of human neuronal cells by defined transcription factors , 2011, Nature.

[32]  K. Eggan,et al.  Constructing and Deconstructing Stem Cell Models of Neurological Disease , 2011, Neuron.

[33]  Michael J. Ziller,et al.  Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines , 2011, Cell.

[34]  S. Lipton,et al.  Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. , 2011, Cell stem cell.

[35]  T. Südhof,et al.  Complexin Clamps Asynchronous Release by Blocking a Secondary Ca2+ Sensor via Its Accessory α Helix , 2010, Neuron.

[36]  Krishanu Saha,et al.  Pluripotency and Cellular Reprogramming: Facts, Hypotheses, Unresolved Issues , 2010, Cell.

[37]  T. Südhof,et al.  Calmodulin Suppresses Synaptotagmin-2 Transcription in Cortical Neurons* , 2010, The Journal of Biological Chemistry.

[38]  Wanguo Wei,et al.  Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules , 2010, Proceedings of the National Academy of Sciences.

[39]  M. Tomishima,et al.  Efficient derivation of functional floor plate tissue from human embryonic stem cells. , 2010, Cell stem cell.

[40]  Zhiping P Pang,et al.  Calmodulin Controls Synaptic Strength via Presynaptic Activation of Calmodulin Kinase II , 2010, The Journal of Neuroscience.

[41]  James A Thomson,et al.  Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency , 2010, Proceedings of the National Academy of Sciences.

[42]  Thomas Vierbuchen,et al.  Direct conversion of fibroblasts to functional neurons by defined factors , 2010, Nature.

[43]  F. Alt,et al.  Excision of Reprogramming Transgenes Improves the Differentiation Potential of iPS Cells Generated with a Single Excisable Vector , 2009, Stem cells.

[44]  Michael Z. Lin,et al.  Characterization of engineered channelrhodopsin variants with improved properties and kinetics. , 2009, Biophysical journal.

[45]  O. Brüstle,et al.  A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration , 2009, Proceedings of the National Academy of Sciences.

[46]  M. Tomishima,et al.  Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling , 2009, Nature Biotechnology.

[47]  T. Furuno,et al.  Effect of NeuroD2 expression on neuronal differentiation in mouse embryonic stem cells , 2009, Cell biology international.

[48]  Lu Chen,et al.  Synaptic Signaling by All-Trans Retinoic Acid in Homeostatic Synaptic Plasticity , 2008, Neuron.

[49]  E. Hashino,et al.  Tlx3 exerts context-dependent transcriptional regulation and promotes neuronal differentiation from embryonic stem cells , 2008, Proceedings of the National Academy of Sciences.

[50]  Jin Woo Chang,et al.  Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells , 2008, Proceedings of the National Academy of Sciences.

[51]  Chad A. Cowan,et al.  Marked differences in differentiation propensity among human embryonic stem cell lines , 2008, Nature Biotechnology.

[52]  Yechiel Elkabetz,et al.  Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. , 2008, Genes & development.

[53]  Zhiping P. Pang,et al.  Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines , 2007, Proceedings of the National Academy of Sciences.

[54]  Zhiping P. Pang,et al.  Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation , 2007, Journal of Neuroscience Methods.

[55]  R. Pearce,et al.  Functional Neural Development from Human Embryonic Stem Cells: Accelerated Synaptic Activity via Astrocyte Coculture , 2007, The Journal of Neuroscience.

[56]  M. Sakakibara,et al.  Introduction of the MASH1 gene into mouse embryonic stem cells leads to differentiation of motoneuron precursors lacking Nogo receptor expression that can be applicable for transplantation to spinal cord injury , 2006, Neurobiology of Disease.

[57]  T. Südhof,et al.  Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release , 2005, Neuron.

[58]  T. Südhof,et al.  SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly , 2002, Science.

[59]  David Baltimore,et al.  Germline Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral Vectors , 2002, Science.

[60]  Marius Wernig,et al.  In vitro differentiation of transplantable neural precursors from human embryonic stem cells , 2001, Nature Biotechnology.

[61]  M. T. Hasan,et al.  Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Figiel,et al.  CNS glia are targets for GDNF and neurturin , 1998, Histochemistry and Cell Biology.

[63]  H. Okayama,et al.  High-efficiency transformation of mammalian cells by plasmid DNA. , 1987, Molecular and cellular biology.

[64]  J. Clarke,et al.  Medicine , 1907, Bristol medico-chirurgical journal.