Next Generation Sequence Assembly with AMOS

A Modular Open‐Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including the lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality.Curr. Protoc. Bioinform. 33:11.8.1‐11.8.18. © 2011 by John Wiley & Sons, Inc.

[1]  David R. Kelley,et al.  Quake: quality-aware detection and correction of sequencing errors , 2010, Genome Biology.

[2]  Gayle M. Wittenberg,et al.  EDAR: An Efficient Error Detection and Removal Algorithm for Next Generation Sequencing Data , 2010, J. Comput. Biol..

[3]  M. Schatz,et al.  Assembly of large genomes using second-generation sequencing. , 2010, Genome research.

[4]  Albert J. Vilella,et al.  Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis , 2010, PLoS biology.

[5]  Srinivas Aluru,et al.  Reptile: representative tiling for short read error correction , 2010, Bioinform..

[6]  Pushkala Jayaraman,et al.  A computational genomics pipeline for prokaryotic sequencing projects , 2010, Bioinform..

[7]  S. Koren,et al.  Assembly algorithms for next-generation sequencing data. , 2010, Genomics.

[8]  Leena Salmela,et al.  Correction of sequencing errors in a mixed set of reads , 2010, Bioinform..

[9]  Lars Bolund,et al.  State of the art de novo assembly of human genomes from massively parallel sequencing data , 2010, Human Genomics.

[10]  Mihai Pop,et al.  Sequencing and genome assembly using next-generation technologies. , 2010, Methods in molecular biology.

[11]  Forest Rohwer,et al.  The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes , 2009, PLoS Comput. Biol..

[12]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[13]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[14]  S. Salzberg,et al.  Bioinformatics challenges of new sequencing technology. , 2008, Trends in genetics : TIG.

[15]  M. Schatz,et al.  Genome assembly forensics: finding the elusive mis-assembly , 2008, Genome Biology.

[16]  Ben Shneiderman,et al.  Hawkeye: an interactive visual analytics tool for genome assemblies , 2007, Genome Biology.

[17]  Mihai Pop,et al.  Minimus: a fast, lightweight genome assembler , 2007, BMC Bioinformatics.

[18]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[19]  Eugene W. Myers,et al.  The fragment assembly string graph , 2005, ECCB/JBI.

[20]  S. Salzberg,et al.  Hierarchical scaffolding with Bambus. , 2003, Genome research.

[21]  P. Pevzner,et al.  An Eulerian path approach to DNA fragment assembly , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[23]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[24]  Michael S. Waterman,et al.  A New Algorithm for DNA Sequence Assembly , 1995, J. Comput. Biol..

[25]  F. Sanger,et al.  A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. , 1975, Journal of molecular biology.