Recent Advances in Polymer Solar Cells: Realization of High Device Performance by Incorporating Water/Alcohol‐Soluble Conjugated Polymers as Electrode Buffer Layer

This Progress Report highlights recent advances in polymer solar cells with special attention focused on the recent rapid-growing progress in methods that use a thin layer of alcohol/water-soluble conjugated polymers as key component to obtain optimized device performance, but also discusses novel materials and device architectures made by major prestigious institutions in this field. We anticipate that due to drastic improvements in efficiency and easy utilization, this method opens up new opportunities for PSCs from various material systems to improve towards 10% efficiency, and many novel device structures will emerge as suitable architectures for developing the ideal roll-to-roll type processing of polymer-based solar cells.

[1]  Guillermo C. Bazan,et al.  Recent Applications of Conjugated Polyelectrolytes in Optoelectronic Devices , 2008 .

[2]  Yongfang Li,et al.  6.5% Efficiency of Polymer Solar Cells Based on poly(3‐hexylthiophene) and Indene‐C60 Bisadduct by Device Optimization , 2010, Advanced materials.

[3]  Fei Huang,et al.  Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte , 2012 .

[4]  Yongfang Li,et al.  High‐Performance Inverted Polymer Solar Cells with Solution‐Processed Titanium Chelate as Electron‐Collecting Layer on ITO Electrode , 2012, Advanced materials.

[5]  Wei You,et al.  Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO levels. , 2010, Angewandte Chemie.

[6]  Wallace W. H. Wong,et al.  High-performance polymer solar cells with a conjugated zwitterion by solution processing or thermal deposition as the electron-collection interlayer , 2012 .

[7]  Luping Yu,et al.  Development of new semiconducting polymers for high performance solar cells. , 2009, Journal of the American Chemical Society.

[8]  Yu-Shan Cheng,et al.  Multiple functionalities of polyfluorene grafted with metal ion-intercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: optical interference, hole blocking, interfacial dipole, and electron conduction. , 2012, Journal of the American Chemical Society.

[9]  W. Su,et al.  Effects of metal-free conjugated oligomer as a surface modifier in hybrid polymer/ZnO solar cells , 2012 .

[10]  Olle Inganäs,et al.  Interlayer for Modified Cathode in Highly Efficient Inverted ITO‐Free Organic Solar Cells , 2012, Advanced materials.

[11]  Xiaofeng Xu,et al.  Hydrophilic poly(triphenylamines) with phosphonate groups on the side chains: synthesis and photovoltaic applications , 2012 .

[12]  Fei Huang,et al.  Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes , 2010 .

[13]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[14]  R. Janssen,et al.  High Open-Circuit Voltage Poly(ethynylene bithienylene):Fullerene Solar Cells , 2006 .

[15]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[16]  S. Darling,et al.  Tetrathienoanthracene-based copolymers for efficient solar cells. , 2011, Journal of the American Chemical Society.

[17]  Xianyu Deng,et al.  Photocurrent response wavelength up to 1.1μm from photovoltaic cells based on narrow-band-gap conjugated polymer and fullerene derivative , 2006 .

[18]  Yen‐Ju Cheng,et al.  Self-Assembled and Cross-Linked Fullerene Interlayer on Titanium Oxide for Highly Efficient Inverted Polymer Solar Cells , 2011 .

[19]  Martin A. Green,et al.  Solar cell efficiency tables (Version 38) , 2011 .

[20]  Y. Chang,et al.  Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable organic photovoltaic cells , 2013 .

[21]  Junbiao Peng,et al.  Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure , 2010 .

[22]  Shi-jian Su,et al.  Pyridinium salt-based molecules as cathode interlayers for enhanced performance in polymer solar cells , 2013 .

[23]  Hongbin Wu,et al.  Novel Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene , 2004 .

[24]  Weiwei Li,et al.  Efficient tandem and triple-junction polymer solar cells. , 2013, Journal of the American Chemical Society.

[25]  Qian Zhang,et al.  Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. , 2013, Journal of the American Chemical Society.

[26]  Yongfang Li,et al.  Small molecule semiconductors for high-efficiency organic photovoltaics. , 2012, Chemical Society reviews.

[27]  Pei-Jung Li,et al.  Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. , 2010, Journal of the American Chemical Society.

[28]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[29]  Gang Li,et al.  Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. , 2009, Journal of the American Chemical Society.

[30]  Yanming Sun,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[31]  Fengxian Xie,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012, Advanced materials.

[32]  Soonil Hong,et al.  Electrostatically Self‐Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells , 2012, Advanced materials.

[33]  Feng Liu,et al.  On the morphology of polymer‐based photovoltaics , 2012 .

[34]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[35]  Yang Yang,et al.  A Selenium‐Substituted Low‐Bandgap Polymer with Versatile Photovoltaic Applications , 2013, Advanced materials.

[36]  Yang Yang,et al.  Electrostatic Self‐Assembly Conjugated Polyelectrolyte‐Surfactant Complex as an Interlayer for High Performance Polymer Solar Cells , 2012 .

[37]  Luping Yu,et al.  A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. , 2010, Accounts of chemical research.

[38]  Yong Cao,et al.  Enhanced open-circuit voltage in polymer solar cells , 2009 .

[39]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[40]  A. Jen,et al.  High‐Performance Inverted Polymer Solar Cells: Device Characterization, Optical Modeling, and Hole‐Transporting Modifications , 2012 .

[41]  Yong Cao,et al.  Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. , 2009, Accounts of chemical research.

[42]  Brian J. Worfolk,et al.  Work Function Control of Interfacial Buffer Layers for Efficient and Air‐Stable Inverted Low‐Bandgap Organic Photovoltaics , 2012 .

[43]  W. Li,et al.  Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. , 2011, Journal of the American Chemical Society.

[44]  O. Inganäs,et al.  An Easily Synthesized Blue Polymer for High‐Performance Polymer Solar Cells , 2010, Advanced materials.

[45]  Peishan Wang,et al.  Influence of water-soluble polythiophene as an interfacial layer on the P3HT/PCBM bulk heterojunction organic photovoltaics , 2011 .

[46]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[47]  Jan Gilot,et al.  Optimizing Polymer Tandem Solar Cells , 2010, Advanced materials.

[48]  Yong Cao,et al.  Largely Enhanced Efficiency with a PFN/Al Bilayer Cathode in High Efficiency Bulk Heterojunction Photovoltaic Cells with a Low Bandgap Polycarbazole Donor , 2011, Advanced materials.

[49]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[50]  Andrea Bernardi,et al.  The role of buffer layers in polymer solar cells , 2011 .

[51]  Wai-Yeung Wong,et al.  Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. , 2007, Nature materials.

[52]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[53]  B. Liu,et al.  Blue-light-emitting cationic water-soluble polyfluorene derivatives with tunable quaternization degree , 2002 .

[54]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[55]  Feng Xu,et al.  Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. , 2011, Angewandte Chemie.

[56]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[57]  Seung-Hwan Oh,et al.  Enhanced performance of inverted polymer solar cells with cathode interfacial tuning via water-soluble polyfluorenes , 2010 .

[58]  Shangfeng Yang,et al.  High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes , 2013 .

[59]  Yang Yang,et al.  Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. , 2012, Journal of the American Chemical Society.

[60]  R. Friend,et al.  Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes. , 2011, Journal of the American Chemical Society.

[61]  Yongfang Li,et al.  Efficiency Enhancement of Polymer Solar Cells Based on Poly(3‐hexylthiophene)/Indene‐C70 Bisadduct via Methylthiophene Additive , 2011 .

[62]  Alex K.-Y. Jen,et al.  Interfacial modification to improve inverted polymer solar cells , 2008 .

[63]  Fei Huang,et al.  High-efficiency electron injection cathode of Au for polymer light-emitting devices , 2005 .

[64]  Jian Tang,et al.  Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells , 2012 .

[65]  Jin Young Kim,et al.  Combination of Titanium Oxide and a Conjugated Polyelectrolyte for High‐Performance Inverted‐Type Organic Optoelectronic Devices , 2011, Advanced materials.

[66]  Yong Cao,et al.  Conjugated polyelectrolytes and neutral polymers with poly(2,7‐carbazole) backbone: Synthesis, characterization, and photovoltaic application , 2011 .

[67]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[68]  T. Riedl,et al.  Ultrathin interlayers of a conjugated polyelectrolyte for low work-function cathodes in efficient inverted organic solar cells , 2013 .

[69]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[70]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[71]  F. Liu,et al.  Efficient Polymer Solar Cells Based on a Low Bandgap Semi‐crystalline DPP Polymer‐PCBM Blends , 2012, Advanced materials.

[72]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[73]  E. Gomez,et al.  Engineering the organic semiconductor-electrode interface in polymer solar cells , 2010 .

[74]  Jenny Nelson,et al.  Factors Limiting Device Efficiency in Organic Photovoltaics , 2013, Advanced materials.

[75]  George F. A. Dibb,et al.  Understanding the Reduced Efficiencies of Organic Solar Cells Employing Fullerene Multiadducts as Acceptors , 2013 .

[76]  Alex K.-Y. Jen,et al.  Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells , 2012 .

[77]  Junbiao Peng,et al.  Conjugated zwitterionic polyelectrolyte-based interface modification materials for high performance polymer optoelectronic devices , 2013 .

[78]  C. Tang,et al.  Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode , 1997 .

[79]  Smith,et al.  Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. , 1996, Physical review. B, Condensed matter.

[80]  Junbiao Peng,et al.  Solution-processable single-material molecular emitters for organic light-emitting devices. , 2011, Chemical Society reviews.

[81]  R. Hamilton,et al.  Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices , 2010, Proceedings of the National Academy of Sciences.

[82]  Seung-Hwan Oh,et al.  Water‐Soluble Polyfluorenes as an Interfacial Layer Leading to Cathode‐Independent High Performance of Organic Solar Cells , 2010 .

[83]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[84]  G. Bazan,et al.  Post‐Deposition Treatment of an Arylated‐Carbazole Conjugated Polymer for Solar Cell Fabrication , 2012, Advanced materials.

[85]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[86]  Yongfang Li,et al.  Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility , 2008 .

[87]  Olle Inganäs,et al.  Enhancing the Photovoltage of Polymer Solar Cells by Using a Modified Cathode , 2007 .

[88]  George G. Malliaras,et al.  Role of CsF on electron injection into a conjugated polymer , 2000 .

[89]  Yang Yang,et al.  A polybenzo[1,2-b:4,5-b']dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. , 2010, Angewandte Chemie.

[90]  A. Heeger,et al.  Efficient, Low Operating Voltage Polymer Light‐Emitting Diodes with Aluminum as the Cathode Material , 1998 .

[91]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[92]  Yongfang Li,et al.  High‐Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene‐C70 Bisadduct , 2010 .

[93]  G. Bazan,et al.  Amino N‐Oxide Functionalized Conjugated Polymers and their Amino‐Functionalized Precursors: New Cathode Interlayers for High‐Performance Optoelectronic Devices , 2012 .

[94]  Seok‐In Na,et al.  Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer , 2009 .

[95]  Fei Huang,et al.  Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. , 2010, Chemical Society reviews.

[96]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[97]  Yongfang Li Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. , 2012, Accounts of chemical research.

[98]  Barry P Rand,et al.  Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells. , 2006, Journal of the American Chemical Society.

[99]  Chunzeng Li,et al.  Modifying organic/metal interface via solvent treatment to improve electron injection in organic light emitting diodes , 2011 .

[100]  A. Heeger,et al.  High‐Efficiency Polymer Solar Cells Enhanced by Solvent Treatment , 2013, Advanced materials.

[101]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[102]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[103]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[104]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[105]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[106]  Wenjing Tian,et al.  Inverted and transparent polymer solar cells prepared with vacuum-free processing , 2009 .

[107]  Yang Yang,et al.  A Robust Inter‐Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells , 2011, Advanced materials.

[108]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[109]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[110]  Wenjun Zhang,et al.  A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs. , 2013, Angewandte Chemie.

[111]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[112]  Jie Zhang,et al.  Efficient Solution‐Processed Small‐Molecule Solar Cells with Inverted Structure , 2013, Advanced materials.

[113]  Lei Wang,et al.  Conjugated Zwitterionic Polyelectrolytes and Their Neutral Precursor as Electron Injection Layer for High‐Performance Polymer Light‐Emitting Diodes , 2011, Advanced materials.

[114]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[115]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[116]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[117]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[118]  V. Mihailetchi,et al.  Photocurrent generation in polymer-fullerene bulk heterojunctions. , 2004, Physical review letters.

[119]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[120]  Y. Geng,et al.  Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer , 2009 .

[121]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[122]  L. Lan,et al.  High Efficiency and High Voc Inverted Polymer Solar Cells Based on a Low-Lying HOMO Polycarbazole Donor and a Hydrophilic Polycarbazole Interlayer on ITO Cathode , 2012 .

[123]  Alex K.-Y. Jen,et al.  A Review on the Development of the Inverted Polymer Solar Cell Architecture , 2010 .

[124]  Yongsheng Chen,et al.  Small molecules based on benzo[1,2-b:4,5-b']dithiophene unit for high-performance solution-processed organic solar cells. , 2012, Journal of the American Chemical Society.

[125]  V. Podzorov,et al.  Surface Potential Mapping of SAM‐Functionalized Organic Semiconductors by Kelvin Probe Force Microscopy , 2011, Advanced materials.

[126]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[127]  Wei You,et al.  Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. , 2011, Angewandte Chemie.

[128]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[129]  Yong Cao,et al.  Bulk-Heterojunction Solar Cells with Benzotriazole-Based Copolymers as Electron Donors: Largely Improved Photovoltaic Parameters by Using PFN/Al Bilayer Cathode , 2010 .

[130]  Fei Huang,et al.  Efficient Electron Injection from a Bilayer Cathode Consisting of Aluminum and Alcohol‐/Water‐Soluble Conjugated Polymers , 2004 .

[131]  D. Bradley,et al.  Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells , 2013 .

[132]  S. Shaheen,et al.  Band‐Offset Engineering for Enhanced Open‐Circuit Voltage in Polymer–Oxide Hybrid Solar Cells , 2007 .

[133]  J. Tersoff Schottky Barrier Heights and the Continuum of Gap States , 1984 .

[134]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[135]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[136]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[137]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[138]  Guillermo C Bazan,et al.  Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. , 2009, Nature chemistry.

[139]  Steve Albrecht,et al.  Light management in PCPDTBT:PC70BM solar cells: A comparison of standard and inverted device structures , 2012 .

[140]  S. Kim,et al.  Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides , 2010 .

[141]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[142]  Yong Cao,et al.  High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO , 2012 .

[143]  Kai Zhang,et al.  Performance Study of Water/Alcohol Soluble Polymer Interface Materials in Polymer Optoelectronic Devices , 2012 .

[144]  Gang Li,et al.  A Semi‐transparent Plastic Solar Cell Fabricated by a Lamination Process , 2008 .

[145]  A. Heeger,et al.  Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. , 2011, Journal of the American Chemical Society.

[146]  V. Mihailetchi,et al.  Space-charge limited photocurrent. , 2005, Physical review letters.

[147]  B. Liu,et al.  Recent Advances in Conjugated Polyelectrolytes for Emerging Optoelectronic Applications , 2011 .

[148]  J. Fréchet,et al.  Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. , 2011, Journal of the American Chemical Society.

[149]  Junbiao Peng,et al.  High-performance polymer heterojunction solar cells of a polysilafluorene derivative , 2008 .

[150]  P. Blom,et al.  Origin of the Reduced Fill Factor and Photocurrent in MDMO‐PPV:PCNEPV All‐Polymer Solar Cells , 2007 .

[151]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[152]  Gang Li,et al.  10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub‐Cells , 2013, Advanced materials.

[153]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[154]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[155]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[156]  Christoph J. Brabec,et al.  Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulk‐Heterojunction Organic Solar Cells in an Inverted Structure , 2010 .

[157]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[158]  Yang Yang,et al.  Interface investigation and engineering – achieving high performance polymer photovoltaic devices , 2010 .

[159]  Alex K.-Y. Jen,et al.  Interface Engineering for Organic Electronics , 2010, Advanced Functional Materials.

[160]  Yongfang Li,et al.  Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. , 2010, Journal of the American Chemical Society.