Regulación en línea de sistemas estocásticos mediante lógica borrosa

El control de sistemas no lineales presenta innumerables dificultades propias de la riqueza dinamica de estos sistemas. En muchos casos, y pese a los grandes avances en el modelado de sistemas complejos fundamentalmente procedentes de las tecnicas de control inteligente (logica borrosa, redes neuronales, algoritmos bioinspirados, . . . ), resulta practicamente imposible obtener modelos que reflejen completamente la diversidad de comportamientos de un sistema. Es por ello que el diseno de controladores fuera de linea ha de ser cumplimentado, e incluso a veces directamente sustituido, por algoritmos de diseno en linea que permitan adaptarse a nuevas dinamicas y comportamientos no contemplados en los modelos. En el caso de que el sistema presente ademas ruidos, sistemas estocasticos, este hecho anade un grado de complejidad extra al diseno del controlador.

[1]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[2]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[3]  David M. Skapura,et al.  Neural networks - algorithms, applications, and programming techniques , 1991, Computation and neural systems series.

[4]  Yoshiki Uchikawa,et al.  On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm , 1992, IEEE Trans. Neural Networks.

[5]  L. Wang,et al.  Fuzzy systems are universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[6]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[7]  Kwang Y. Lee,et al.  Two approaches for automating the tuning process of fuzzy logic controllers [PWR application] , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[8]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control , 1994 .

[9]  R. Babuska,et al.  Fuzzy modeling - a control engineering perspective , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[10]  Tao Jiang,et al.  Generalized defuzzification strategies and their parameter learning procedures , 1996, IEEE Trans. Fuzzy Syst..

[11]  F.H.F. Leung,et al.  Stability design of TS model based fuzzy systems , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[12]  Yongsheng Ding,et al.  Typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators: necessary conditions and comparison , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[13]  John Yen,et al.  Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter , 1999, Fuzzy Sets Syst..

[14]  V. Kreinovich,et al.  Fuzzy systems are universal approximators for a smooth function and its derivatives , 2000, Int. J. Intell. Syst..

[15]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[16]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[17]  Dan Simon,et al.  Training fuzzy systems with the extended Kalman filter , 2002, Fuzzy Sets Syst..

[18]  Plamen P. Angelov,et al.  Identification of evolving fuzzy rule-based models , 2002, IEEE Trans. Fuzzy Syst..

[19]  D.P. Filev,et al.  An approach to online identification of Takagi-Sugeno fuzzy models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  José Manuel Andújar Márquez,et al.  A methodology to design stable nonlinear fuzzy control systems , 2005, Fuzzy Sets Syst..

[21]  Adelio Salsano,et al.  Sufficient conditions to impose derivative constraints on MISO Takagi-Sugeno Fuzzy logic systems , 2005, IEEE Transactions on Fuzzy Systems.

[22]  F. Palis,et al.  Modeling and control of non-linear systems using soft computing techniques , 2007, Appl. Soft Comput..

[23]  José Manuel Andújar Márquez,et al.  A General and Formal Methodology to Design Stable Nonlinear Fuzzy Control Systems , 2009, IEEE Transactions on Fuzzy Systems.

[24]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[25]  Basil Mohammed Al-Hadithi,et al.  New methods for the estimation of Takagi–Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems , 2012 .

[26]  José Manuel Andújar Márquez,et al.  A general methodology for online TS fuzzy modeling by the extended Kalman filter , 2014, Appl. Soft Comput..

[27]  Antonio Javier Barragán,et al.  Hibridación de sistemas borrosos para el modelado y control , 2014 .

[28]  Basil Mohammed Al-Hadithi,et al.  New Concepts for the Estimation of Takagi-Sugeno Model Based on Extended Kalman Filter , 2014 .

[29]  Basil Mohammed Al-Hadithi,et al.  Suboptimal Recursive Methodology for Takagi-Sugeno Fuzzy Models Identification , 2014 .