Prediction of Molecular Mutations in Diffuse Low-Grade Gliomas using MR Imaging Features

[1]  Nicholas J. Tustison,et al.  Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features , 2018, Frontiers in Computational Neuroscience.

[2]  S. Klein,et al.  Predicting the 1p/19q Codeletion Status of Presumed Low-Grade Glioma with an Externally Validated Machine Learning Algorithm , 2019, Clinical Cancer Research.

[3]  C. Xie,et al.  Prediction of IDH Status Through MRI Features and Enlightened Reflection on the Delineation of Target Volume in Low-Grade Gliomas , 2019, Technology in cancer research & treatment.

[4]  Lijie Wang,et al.  Pretreatment MRI Radiomics Analysis Allows for Reliable Noninvasive Prediction of Survival and TERT Promoter Mutation in Lower-Grade Gliomas , 2019, SSRN Electronic Journal.

[5]  Peng Cao,et al.  Textural features of dynamic contrast‐enhanced MRI derived model‐free and model‐based parameter maps in glioma grading , 2018, Journal of magnetic resonance imaging : JMRI.

[6]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[7]  Zeina A Shboul,et al.  Quantitative MR Image Analysis for Brian Tumor. , 2017, VipIMAGE 2017 : proceedings of the VI ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing Porto, Portugal, October 18-20, 2017. VipIMAGE (Conference).

[8]  Maulik R. Kamdar,et al.  MRI to MGMT: Predicting methylation status in glioblastoma patients using convolutional recurrent neural networks , 2018, PSB.

[9]  T. Jiang,et al.  Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature , 2018, European Radiology.

[10]  T. Jiang,et al.  Regional specificity of 1p/19q co-deletion combined with radiological features for predicting the survival outcomes of anaplastic oligodendroglial tumor patients , 2018, Journal of Neuro-Oncology.

[11]  Christos Davatzikos,et al.  Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features , 2017, Scientific Data.

[12]  Jirí Sedlár,et al.  Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence , 2017, Journal of Digital Imaging.

[13]  Susan M. Chang,et al.  Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma , 2017, Scientific Reports.

[14]  Evangelia I. Zacharaki,et al.  Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma , 2017, Comput. Methods Programs Biomed..

[15]  Yuanyuan Wang,et al.  Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma , 2017, European Radiology.

[16]  N. Hu,et al.  Role of chromosomal 1p/19q co-deletion on the prognosis of oligodendrogliomas: A systematic review and meta-analysis , 2016 .

[17]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[18]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[19]  Yu Yao,et al.  Isocitrate Dehydrogenase (IDH)1/2 Mutations as Prognostic Markers in Patients With Glioblastomas , 2016, Medicine.

[20]  N. Hu,et al.  Role of chromosomal 1 p / 19 q co-deletion on the prognosis of oligodendrogliomas : A systematic review and meta-analysis , 2016 .

[21]  [World Health Organization classification of tumours of the central nervous system: a summary]. , 2016, Zhonghua bing li xue za zhi = Chinese journal of pathology.

[22]  Teresa Wu,et al.  Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma , 2015, PloS one.

[23]  Juan J. Martinez,et al.  Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. , 2015, Medical physics.

[24]  J. Dai,et al.  Patterns of Tumor Contrast Enhancement Predict the Prognosis of Anaplastic Gliomas with IDH1 Mutation , 2015, American Journal of Neuroradiology.

[25]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[26]  Tej D. Azad,et al.  Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities , 2015, Science Translational Medicine.

[27]  P. Decker,et al.  IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas , 2015, Oncotarget.

[28]  Nooshin Nabizadeh,et al.  Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features , 2015, Comput. Electr. Eng..

[29]  I. El Naqa,et al.  A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities , 2015, Physics in medicine and biology.

[30]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[31]  Alexander R. Pico,et al.  Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. , 2015, The New England journal of medicine.

[32]  Khan M. Iftekharuddin,et al.  Multi-fractal detrended texture feature for brain tumor classification , 2015, Medical Imaging.

[33]  N. Just,et al.  Improving tumour heterogeneity MRI assessment with histograms , 2014, British Journal of Cancer.

[34]  H. Evans,et al.  Necrotizing soft tissue infections: review and current concepts in treatment, systems of care, and outcomes. , 2014, Current problems in surgery.

[35]  Khan M. Iftekharuddin,et al.  Multi-fractal texture features for brain tumor and edema segmentation , 2014, Medical Imaging.

[36]  Atiq Islam,et al.  Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors , 2013, IEEE Transactions on Biomedical Engineering.

[37]  K. Ichimura,et al.  Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss , 2013, Acta Neuropathologica.

[38]  G. Hutter,et al.  IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival. , 2013, Neuro-oncology.

[39]  Howard Colman,et al.  IDH1 and IDH2 Mutations in Gliomas , 2013, Current Neurology and Neuroscience Reports.

[40]  Kui Zhang,et al.  The prognostic value of MGMT promoter methylation in Glioblastoma multiforme: a meta-analysis , 2013, Familial Cancer.

[41]  R. Meier,et al.  A Hybrid Model for Multimodal Brain Tumor Segmentation , 2013 .

[42]  R. McLendon,et al.  Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas , 2012, Oncotarget.

[43]  Peter Canoll,et al.  The cellular origin for malignant glioma and prospects for clinical advancements , 2012, Expert review of molecular diagnostics.

[44]  Zhongli Jiang,et al.  Co-Deletion of Chromosome 1p/19q and IDH1/2 Mutation in Glioma Subsets of Brain Tumors in Chinese Patients , 2012, PloS one.

[45]  A. Mukasa,et al.  Significance of IDH mutations varies with tumor histology, grade, and genetics in Japanese glioma patients , 2012, Cancer science.

[46]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[47]  Michael K. Danquah,et al.  The quintessential research world is progressively interdisciplinary , 2012 .

[48]  Pauline John,et al.  Brain Tumor Classification Using Wavelet and Texture Based Neural Network , 2012 .

[49]  G. Reifenberger,et al.  Patients with IDH 1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH 1-mutated glioblastomas , and IDH 1 mutation status accounts for the unfavorable prognostic effect of higher age : implications for classification of gliomas , 2010 .

[50]  Christos Davatzikos,et al.  Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme , 2009, Magnetic resonance in medicine.

[51]  A. Rutman,et al.  Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. , 2009, European journal of radiology.

[52]  P. Wen,et al.  Phase II Study of Protracted Daily Temozolomide for Low-Grade Gliomas in Adults , 2008, Clinical Cancer Research.

[53]  D. Demetrick,et al.  The Use of Magnetic Resonance Imaging to Noninvasively Detect Genetic Signatures in Oligodendroglioma , 2008, Clinical Cancer Research.

[54]  Robert J. Ogg,et al.  Multifractal modeling, segmentation, prediction, and statistical validation of posterior fossa tumors , 2008, SPIE Medical Imaging.

[55]  F. Schmidt Meta-Analysis , 2008 .

[56]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[57]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[58]  P. Kleihues,et al.  Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. , 2005, Journal of neuropathology and experimental neurology.

[59]  David J. Hand,et al.  A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems , 2001, Machine Learning.

[60]  Ronald Marsh,et al.  Fractal analysis of tumor in brain MR images , 2003, Machine Vision and Applications.

[61]  Juha Reunanen,et al.  Overfitting in Making Comparisons Between Variable Selection Methods , 2003, J. Mach. Learn. Res..

[62]  Paul M. Thompson,et al.  Texture based MRI segmentation with a two-stage hybrid neural classifier , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[63]  R A Betensky,et al.  Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. , 2001, Cancer research.

[64]  J. L. Véhel,et al.  Generalized Multifractional Brownian Motion: Definition and Preliminary Results , 1999 .

[65]  J. Costello,et al.  Graded methylation in the promoter and body of the O6-methylguanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells. , 1994, The Journal of biological chemistry.

[66]  C. M. Hill Computer-aided diagnosis. , 1992, Dental update.

[67]  Robert King,et al.  Textural features corresponding to textural properties , 1989, IEEE Trans. Syst. Man Cybern..

[68]  R. Barnard,et al.  The classification of tumours of the central nervous system. , 1982, Neuropathology and applied neurobiology.

[69]  J. Sneep,et al.  With a summary , 1945 .