Impermeable inorganic “walls” sandwiching perovskite layer toward inverted and indoor photovoltaic devices

[1]  Zikang Tang,et al.  Polymer strategies for high-efficiency and stable perovskite solar cells , 2021 .

[2]  A. Jen,et al.  Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. , 2020, Journal of the American Chemical Society.

[3]  Xiaodang Zhang,et al.  Passivation of defects in perovskite solar cell: From a chemistry point of view , 2020 .

[4]  Ka-lok Chiu,et al.  Full Defects Passivation Enables 21% Efficiency Perovskite Solar Cells Operating in Air , 2020, Advanced Energy Materials.

[5]  Zhaoxin Wu,et al.  Suppressing Ion Migration Enables Stable Perovskite Light‐Emitting Diodes with All‐Inorganic Strategy , 2020, Advanced Functional Materials.

[6]  Mansoo Choi,et al.  Charge Transport Layer-Dependent Electronic Band Bending in Perovskite Solar Cells and Its Correlation to Light-Induced Device Degradation , 2020 .

[7]  A. Jen,et al.  Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells , 2020 .

[8]  K. Stevenson,et al.  Unraveling the impact of hole transport materials on photostability of perovskite films and p-i-n solar cells. , 2020, ACS applied materials & interfaces.

[9]  N. Koch,et al.  Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells. , 2020, ACS nano.

[10]  Ligang Xu,et al.  In situ construction of gradient heterojunction using organic VOx precursor for efficient and stable inverted perovskite solar cells , 2020 .

[11]  Dieter Neher,et al.  Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces , 2019, Advanced materials.

[12]  Xingwang Zhang,et al.  Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells , 2019, Advanced Energy Materials.

[13]  A. Djurišić,et al.  Tailoring Triple‐Anion Perovskite Material for Indoor Light Harvesting with Restrained Halide Segregation and Record High Efficiency Beyond 36% , 2019, Advanced Energy Materials.

[14]  Zhaoxin Wu,et al.  Rational Core–Shell Design of Open Air Low Temperature In Situ Processable CsPbI3 Quasi‐Nanocrystals for Stabilized p‐i‐n Solar Cells , 2019, Advanced Energy Materials.

[15]  T. Unold,et al.  The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells , 2019, Energy & Environmental Science.

[16]  S. De Wolf,et al.  Defect and Contact Passivation for Perovskite Solar Cells , 2019, Advanced materials.

[17]  Yongli Gao,et al.  Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells , 2019, Nature Energy.

[18]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[19]  L. Li,et al.  Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells , 2019, Nature Communications.

[20]  L. Qiu,et al.  Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface , 2019, Advanced materials.

[21]  Yuanyuan Zhou,et al.  Synthetic Approaches for Halide Perovskite Thin Films. , 2018, Chemical reviews.

[22]  M. Nazeeruddin,et al.  Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells? , 2018, Advanced Functional Materials.

[23]  A. Petrozza,et al.  Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film , 2018 .

[24]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[25]  Jie Cao,et al.  Interstitial Occupancy by Extrinsic Alkali Cations in Perovskites and Its Impact on Ion Migration , 2018, Advanced materials.

[26]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[27]  Pengpeng Zhang,et al.  Crystalline orientation dependent photoresponse and heterogeneous behaviors of grain boundaries in perovskite solar cells , 2018 .

[28]  Seonhee Lee,et al.  Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. , 2018, Journal of the American Chemical Society.

[29]  T. Murakami,et al.  Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite , 2017, Scientific Reports.

[30]  Hyun Suk Jung,et al.  Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources , 2017 .

[31]  P. Pikhitsa,et al.  Trapped charge-driven degradation of perovskite solar cells , 2016, Nature Communications.

[32]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[33]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[34]  Xudong Guo,et al.  Interface engineering of perovskite solar cells with PEO for improved performance , 2015 .

[35]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[36]  M. Green,et al.  Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[37]  B. Xiao,et al.  Crystal Structures, Optical Properties, and Effective Mass Tensors of CH3NH3PbX3 (X = I and Br) Phases Predicted from HSE06. , 2014, The journal of physical chemistry letters.

[38]  David Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[39]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[40]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[41]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[42]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[43]  Matthias Scheffler,et al.  Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions , 2009, J. Comput. Phys..

[44]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[45]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .