Boosted sodium storage of GeS2/GeO2/ZnS composite via heterostructure engineering

[1]  Jiajia Luo,et al.  Layer-by-layer hetero-carbon modifying ZnS nanocubes anode with improved long-term life for sodium-ion batteries , 2023, Ceramics International.

[2]  Y. Zhong,et al.  Interface Modulation of Metal Sulfide Anodes for Long‐Cycle‐Life Sodium‐Ion Batteries , 2023, Advanced materials.

[3]  Jiachang Zhao,et al.  Facile Preparation of PbSe@C Nanoflowers as Anode Materials for Li-ion Batteries , 2022, Chemical Engineering Science.

[4]  Xing Ou,et al.  Enhancing Reversible Reactions via Phase Engineering on Bi-Crystal GeS2 Nanosheets for Superior Sodium-Ion Storage , 2022, ACS Sustainable Chemistry & Engineering.

[5]  Xing Ou,et al.  Isotropy‐Induced Stress Relaxation and Strong‐Tolerance for High‐Rate and Long‐Duration Sodium Storage by Amorphous Structure Engineering , 2022, Advanced Functional Materials.

[6]  Tongchao Liu,et al.  Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy , 2022, Nature Communications.

[7]  Z. Wen,et al.  Construction of Hierarchical NiS@C/rGO Heterostructures for Enhanced Sodium Storage , 2022, Chemical Engineering Journal.

[8]  Xing Ou,et al.  Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries , 2021, Renewable and Sustainable Energy Reviews.

[9]  Z. Wen,et al.  Heterostructured Cu2S@ZnS/C Composite with Fast Interfacial Reaction Kinetics for High-Performance 3D-Printed Sodium-Ion Batteries , 2021, Chemical Engineering Journal.

[10]  Jing Mao,et al.  MoS2/SnS@C hollow hierarchical nanotubes as superior performance anode for sodium-ion batteries , 2021, Nano Energy.

[11]  Wengao Zhao,et al.  In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes , 2021, Nature Communications.

[12]  Jiaxin Li,et al.  Fluorine-Doped GeO2@C Composite with Abundant Oxygen Vacancies for High-Capacity Lithium-Ion Batteries , 2021, ACS Applied Energy Materials.

[13]  L. Wen,et al.  Recent progress on the recycling technology of Li-ion batteries , 2021 .

[14]  Tianbiao Zeng,et al.  Novel MnBi4S7/graphene composite as sodium-ion batteries anode , 2021, Materials Letters.

[15]  S. Yao,et al.  Rational Exploration of Conversion-Alloying Reaction Based Anodes for High-Performance K-Ion Batteries , 2021 .

[16]  Jin Koo Kim,et al.  Recent Advances in Heterostructured Anode Materials with Multiple Anions for Advanced Alkali‐Ion Batteries , 2021, Advanced Energy Materials.

[17]  R. Tian,et al.  Deactivated-desulfurizer-derived hollow copper sulfide as anode materials for advanced sodium ion batteries , 2020 .

[18]  Hong Jin,et al.  Yolk–Shell Cu2O@CuO‐decorated RGO for High‐Performance Lithium‐Ion Battery Anode , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[19]  D. Hall,et al.  Prospects for lithium-ion batteries and beyond—a 2030 vision , 2020, Nature Communications.

[20]  Feng Wu,et al.  Co‐Construction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodium‐Ion Batteries , 2020, Advanced materials.

[21]  Xing Ou,et al.  Enhancing the Rapid Na+-Storage Performance via Electron/Ion Bridges through GeS2/Graphene Heterojunction. , 2020, ACS nano.

[22]  Yao Zhou,et al.  Cubic MnS-FeS2 Composite Derived from Prussian Blue Analogue as Anode Material of Sodium Ion Batteries with Long-term Cycle Stability. , 2020, ACS applied materials & interfaces.

[23]  Xifei Li,et al.  Building Fast Diffusion Channel by Constructing Metal Sulfide/Metal Selenide Heterostructures for High-Performance Sodium Ion Batteries Anode. , 2020, Nano letters.

[24]  Darren H. S. Tan,et al.  Sodium‐Ion Batteries Paving the Way for Grid Energy Storage , 2020, Advanced Energy Materials.

[25]  Xing Ou,et al.  Hierarchical chrysanthemum-like MoS2/Sb heterostructure encapsulated into N-doped graphene framework for superior potassium-ion storage , 2020 .

[26]  Yida Deng,et al.  Tungsten disulfide-based nanomaterials for energy conversion and storage , 2020, Tungsten.

[27]  Chenghao Yang,et al.  Heterointerface Engineering of Hierarchical Bi2S3/MoS2 with Self‐Generated Rich Phase Boundaries for Superior Sodium Storage Performance , 2020, Advanced Functional Materials.

[28]  Yan Yu,et al.  Topotactic Transformation Synthesis of 2D Ultrathin GeS2 Nanosheets towards High-Rate and High-Energy Density Sodium-Ion Half/Full Batteries. , 2019, ACS nano.

[29]  Hua Zhang,et al.  Heterostructured TiO2 Spheres with Tunable Interiors and Shells toward Improved Packing Density and Pseudocapacitive Sodium Storage , 2019, Advanced materials.

[30]  Z. Wen,et al.  Fast Redox Kinetics in Bi‐Heteroatom Doped 3D Porous Carbon Nanosheets for High‐Performance Hybrid Potassium‐Ion Battery Capacitors , 2019, Advanced Energy Materials.

[31]  Z. Tian,et al.  Synthesis and Operando Sodiation Mechanistic Study of Nitrogen‐Doped Porous Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode , 2019, Advanced Energy Materials.

[32]  Dan Li,et al.  Heterostructured SnS/TiO2@C hollow nanospheres for superior lithium and sodium storage. , 2019, Nanoscale.

[33]  Guozhao Fang,et al.  Towards a durable high performance anode material for lithium storage: stabilizing N-doped carbon encapsulated FeS nanosheets with amorphous TiO2 , 2019, Journal of Materials Chemistry A.

[34]  Hang Hu,et al.  Facile construction of hollow carbon nanosphere-interconnected network for advanced sodium-ion battery anode. , 2019, Journal of colloid and interface science.

[35]  Yang‐Kook Sun,et al.  A zero fading sodium ion battery: High compatibility microspherical patronite in ether-based electrolyte , 2019, Energy Storage Materials.

[36]  Mingdeng Wei,et al.  Rational design of few-layer MoSe2 confined within ZnSe-C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. , 2019, Nanoscale.

[37]  C. Wolverton,et al.  Atomic‐Scale Observation of Electrochemically Reversible Phase Transformations in SnSe2 Single Crystals , 2018, Advanced materials.

[38]  Xiaobo Ji,et al.  Facile synthetic strategy to uniform Cu9S5 embedded into carbon: A novel anode for sodium-ion batteries , 2018, Journal of Alloys and Compounds.

[39]  M. Jaroniec,et al.  The Application of Hollow Structured Anodes for Sodium‐Ion Batteries: From Simple to Complex Systems , 2018, Advanced materials.

[40]  Do Kyung Kim,et al.  A Robust Approach for Efficient Sodium Storage of GeS2 Hybrid Anode by Electrochemically Driven Amorphization , 2018 .

[41]  Hua Wang,et al.  In Situ Atomic‐Scale Study of Particle‐Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation , 2018, Advanced science.

[42]  Yun Song,et al.  Tuning Pseudocapacitance via C-S Bonding in WS2 Nanorods Anchored on N,S Codoped Graphene for High-Power Lithium Batteries. , 2018, ACS applied materials & interfaces.

[43]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[44]  D. Yan,et al.  ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries , 2017 .

[45]  Jilei Liu,et al.  MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: Constructing an ideal heterostructure for enhanced Na-ion storage , 2016 .

[46]  Bingwen Hu,et al.  GeO2 decorated reduced graphene oxide as anode material of sodium ion battery , 2015 .

[47]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[48]  Q. Yan,et al.  1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries , 2018 .

[49]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.