Unsymmetric Dinucleating Ligands for Metallobiosite Modelling

Awareness of the asymmetric nature of numerous dinuclear metallobiosites and of the ability of the individual metal ions to have quite distinct roles in the functioning of the metalloenzyme concerned has led to a search for carefully designed unsymmetric dinucleating ligands that will give dinuclear complexes capable of acting as models for the metallobiosites. This review surveys progress made in the design and synthesis of complexes capable of serving as models for donor atom, coordination number and geometric asymmetries found at dinuclear metal centres.

[1]  W. Haase,et al.  Dinuclear Nickel(II) Complexes as Models for the Active Site of Urease. , 1996, Inorganic chemistry.

[2]  G. Papageorgiou,et al.  Synthesis of unsymmetrical dinucleating ligands bearing nitrogen and oxygen donor atoms , 1996 .

[3]  J. Satcher,et al.  An Unsymmetrical, Doubly Bridged Diiron(II) Complex with Readily Accessible Coordination Sites , 1996 .

[4]  W. Haase,et al.  [Ni(2)(ppepO)(C(6)H(5)COO)(2)(CH(3)COOH)]ClO(4).C(4)H(10)O: Synthesis and Characterization of an Asymmetric Dinuclear Nickel(II) Complex Showing Unusual Coordination Behavior with Relevance to the Active Site of Urease. , 1996, Inorganic chemistry.

[5]  K. Inomata,et al.  Coordination Asymmetry of a Dinuclear Copper(II) Complex: Synthesis, Structure, and Magnetism , 1996 .

[6]  P. Reinemer,et al.  Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. , 1995, Journal of molecular biology.

[7]  Anna Tempczyk,et al.  Crystal structures of human calcineurin and the human FKBP12–FK506–calcineurin complex , 1995, Nature.

[8]  Y. Mizutani,et al.  SYNTHESIS, CHARACTERIZATION, AND REVERSIBLE OXYGENATION OF MU -ALKOXO DIIRON(II) COMPLEXES WITH THE DINUCLEATING LIGAND N,N,N',N'-TETRAKIS(6-METHYL-2- PYRIDYL)METHYL-1,3-DIAMINO-PROPAN-2-OLATE , 1995 .

[9]  Hartmut Michel,et al.  Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans , 1995, Nature.

[10]  P. Tucker,et al.  Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site. , 1995, Science.

[11]  Robert T. Taylor,et al.  Use of ligand design to provide coordination asymmetry in a binuclear metalloprotein model system: Ligand synthesis, coordination chemistry with copper, and demonstration of site-directed reactivity , 1995 .

[12]  Robert P. Hausinger,et al.  The crystal structure of urease from Klebsiella aerogenes. , 1995, Science.

[13]  H. Sakiyama,et al.  Di(phenoxo)-bridged Dinuclear Mn2(II,II) and Mn2(II,III) Complexes of Macrocyclic Ligands: Structure, Properties, and Catalase-Like Function , 1995 .

[14]  B. Feringa,et al.  Modeling dinuclear copper sites of biological relevance - synthesis, molecular-structure, magnetic-properties, and h-1- nmr spectroscopy of a nonsymmetric dinuclear copper(ii) complex - microcalorimetric determination of stepwise complexation of copper(ii) by a nonsymmetric dinucleating ligand , 1995 .

[15]  A. Bousseksou,et al.  A Model of Semimet Hemerythrin; NMR Spectroscopic Evidence of Valence Localization in Bis(μ‐carboxylato)(μ‐phenolato)diiron(II,III) Complexes in Solution , 1995 .

[16]  H. Sakiyama,et al.  Dinuclear Mn complexes as functional models of Mn catalase , 1995 .

[17]  Y. Hayashi,et al.  MU -PEROXO DICOBALT COMPLEXES CONTAINING AN UNSYMMETRICAL DINUCLEATING LIGAND : SYNTHESIS, CHARACTERIZATION, AND OXYGEN AFFINITY , 1994 .

[18]  G. Jameson,et al.  Synthesis of an Unsymmetrical Dinucleating Ligand That Leads to an Asymmetric Dicopper(II) Complex Having Different Donor Sets at Each Copper , 1994 .

[19]  F. Frolow,et al.  Structure of a unique twofold symmetric haem-binding site , 1994, Nature Structural Biology.

[20]  A. Deronzier,et al.  A Mixed-Valent, Unsymmetrical FeIIFeIII Complex with a Terminal Phenolato Ligand as a Model for the Active Site of Purple Acid Phosphatases† , 1994 .

[21]  B. Feringa,et al.  A New Method for the Synthesis of Nonsymmetric Dinucleating Ligands by Aminomethylation of Phenols and Salicylaldehydes , 1994 .

[22]  Stephen J. Lippard,et al.  Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane , 1993, Nature.

[23]  B. Vallee,et al.  New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. , 1993, Biochemistry.

[24]  R. Holz,et al.  EXAFS Studies of Uteroferrin and Its Anion Complexes , 1993 .

[25]  B. Matthews,et al.  Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme. , 1993, Biochemistry.

[26]  K. Karlin,et al.  A dinuclear mixed-valence Cu(I)/Cu(II) complex and its reversible reactions with dioxygen: generation of a superoxodicopper(II) species , 1992 .

[27]  K. Karlin,et al.  New thermally stable hydroperoxo- and peroxo-copper complexes , 1992 .

[28]  L. Que,et al.  Dinuclear Iron‐ and Manganese‐Oxo Sites in Biology , 1991 .

[29]  L. Sieker,et al.  Structures of deoxy and oxy hemerythrin at 2.0 A resolution. , 1991, Journal of molecular biology.

[30]  E. E. Kim,et al.  Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. , 1991, Journal of molecular biology.

[31]  K. Karlin,et al.  Unsymmetrical dicopper complexes. Direct observation of reversible O2 binding in a copper monooxygenase model system , 1991 .

[32]  J. Vincent,et al.  Proteins Containing Oxo-Bridged Dinuclear Iron Centers: A Bioinorganic Perspective , 1990 .

[33]  P. A. Vigato,et al.  The activation of small molecules by dinuclear complexes of copper and other metals , 1990 .

[34]  W. Lipscomb,et al.  Molecular structure of leucine aminopeptidase at 2.7-A resolution. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Hans Eklund,et al.  Three-dimensional structure of the free radical protein of ribonucleotide reductase , 1990, Nature.

[36]  Masatatsu Suzuki,et al.  Dinuclear cobalt(II) complexes containing 1,3-(or 1,5-)bis[bis-(2-pyridylmethyl)amino]-2-propanolato (or-3-pentanolato) : preparation and reaction with molecular oxygen , 1990 .

[37]  T. Doman,et al.  Synthesis, crystal structure and magnetic properties of a pyrazolate-bridged binuclear copper(II) complex , 1990 .

[38]  E. Solomon,et al.  Spectroscopic studies of the mixed-valent [iron(II), iron(III)] forms of the non-heme iron protein hemerythrin: iron coordination differences related to reactivity , 1990 .

[39]  H L Carrell,et al.  X-ray analysis of D-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[40]  E. Witten,et al.  Dissymmetry effects in μ-oxo diiron(III) species: structures and spectroscopic properties of [N5FeOFeX3]+ (X = Cl, Br) and implications for oxo-bridged dinuclear iron proteins , 1989 .

[41]  T. N. Sorrell Synthetic models for binuclear copper proteins , 1989 .

[42]  Edward Hough,et al.  High-resolution (1.5 Å) crystal structure of phospholipase C from Bacillus cereus , 1989, Nature.

[43]  E. Sinn,et al.  Mononuclear and binuclear complexes with binucleating ligands, involving pyrrole, imidazole and salicylaldehyde derivatives , 1988 .

[44]  L. Que,et al.  Exafs studies of binuclear iron proteins hemerythrin and ribonucleotide reductase , 1987 .

[45]  P. Debrunner,et al.  Reduction of the binuclear iron site in octameric methemerythrins. Characterizations of intermediates and a unifying reaction scheme , 1987 .

[46]  D. Stephan,et al.  Toward copper(II) hemocyanin models. 2. Synthesis and characterization of binuclear copper(II) complexes of a heptadentate ligand , 1987 .

[47]  L. Que,et al.  1H NMR probes of the binuclear iron cluster in hemerythrin , 1986 .

[48]  D. Hendrickson,et al.  Counterion effects on the intramolecular electron-transfer rate of mixed-valence biferrocenium salts: micromodulation and phase transitions , 1986 .

[49]  T. C. Bruice,et al.  Influence of hydrogen ion activity and general acid-base catalysis on the rate of decomposition of hydrogen peroxide by a novel nonaggregating water-soluble iron(III) tetraphenylporphyrin derivative , 1986 .

[50]  C. O'connor,et al.  Binuclear molecules incorporating small molecules as bridging ligands. Magnetic properties and molecular structure of [Cu2L(B)]2+ where B = hydroxide or bromide and HL = 2,6-bis(N-(2-pyridylmethyl)formimidoyl)-4-methylphenol , 1986 .

[51]  C. O'connor,et al.  Synthesis, structure and magnetic properties of a binuclear, pentacoordinate copper(II) complex , 1984 .

[52]  J. Richardson,et al.  Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. , 1980, Journal of molecular biology.

[53]  P. A. Vigato,et al.  Compartmental ligands: routes to homo- and hetero-dinuclear complexes , 1979 .

[54]  E. Solomon,et al.  Preparation and characterization of met apo hemocyanin: a single copper (II) active site. , 1978, Biochemical and biophysical research communications.

[55]  T. J. Anderson,et al.  Complexes of binucleating ligands with two different coordinating environments. 3. Crystal and molecular structure of a binuclear nickel(II) mixed spin state complex. Ni2(py)2(BAA)2en.py , 1976 .

[56]  R. Robson,et al.  Complexes of binucleating ligands. VI. Copper(II) complexes of a tetraamine ligand , 1974 .

[57]  R. Robson Complexes of binucleating ligands I. Two novel binuclear cupric complexes , 1970 .