The shift bound for cyclic, Reed-Muller and geometric Goppa codes

We give a generalization of the shift bound on the minimum distance for cyclic codes which applies to Reed-Muller and algebraicgeometric codes. The number of errors one can correct by majority coset decoding is up to half the shift bound.

[1]  Tadao Kasami,et al.  New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.

[2]  Carlos R. P. Hartmann,et al.  Generalizations of the BCH Bound , 1972, Inf. Control..

[3]  R. Pellikaan On the existence of error-correcting pairs , 1996 .

[4]  Victor K.-W. Wei,et al.  Simplified understanding and efficient decoding of a class of algebraic-geometric codes , 1994, IEEE Trans. Inf. Theory.

[5]  Iwan M. Duursma,et al.  Decoding codes from curves and cyclic codes , 1993 .

[6]  T. R. N. Rao,et al.  A simple approach for construction of algebraic-geometric codes from affine plane curves , 1993, IEEE Trans. Inf. Theory.

[7]  Marijn van Eupen,et al.  On the minimum distance of ternary cyclic codes , 1993, IEEE Trans. Inf. Theory.

[8]  Iwan M. Duursma,et al.  Majority coset decoding , 1993, IEEE Trans. Inf. Theory.

[9]  T. R. N. Rao,et al.  Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.

[10]  Pascale Charpin,et al.  Studying the locator polynomials of minimum weight codewords of BCH codes , 1992, IEEE Trans. Inf. Theory.

[11]  Carlos R. P. Hartmann,et al.  On the minimum distance of certain reversible cyclic codes (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[12]  E. J. Weldon,et al.  New generalizations of the Reed-Muller codes-II: Nonprimitive codes , 1968, IEEE Trans. Inf. Theory.

[13]  Ruud Pellikaan,et al.  On the Efficient Decoding of Algebraic-Geometric Codes , 1993 .

[14]  Kees Roos,et al.  A new lower bound for the minimum distance of a cyclic code , 1983, IEEE Trans. Inf. Theory.

[15]  Gui Liang Feng,et al.  A new procedure for decoding cyclic and BCH codes up to actual minimum distance , 1994, IEEE Trans. Inf. Theory.

[16]  E. J. Weldon Correction to "New Generalizations of the Reed-Muller Codes - Part II: Nonprimitive Codes" , 1968, IEEE Trans. Inf. Theory.

[17]  Carlos Munuera,et al.  On the generalized Hamming weights of geometric-Goppa codes , 1994, IEEE Trans. Inf. Theory.

[18]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[19]  Ba-Zhong Shen,et al.  Generation of matrices for determining minimum distance and decoding of algebraic-geometric codes , 1995, IEEE Trans. Inf. Theory.

[20]  Ba-Zhong Shen,et al.  A code decomposition approach for decoding cyclic and algebraic-geometric codes , 1995, IEEE Trans. Inf. Theory.

[21]  P. Vijay Kumar,et al.  On the weight hierarchy of geometric Goppa codes , 1994, IEEE Trans. Inf. Theory.

[22]  Jean-Marie Goethals,et al.  On Generalized Reed-Muller Codes and Their Relatives , 1970, Inf. Control..

[23]  Richard M. Wilson,et al.  On the minimum distance of cyclic codes , 1986, IEEE Trans. Inf. Theory.

[24]  Tom Høholdt,et al.  Fast decoding of algebraic-geometric codes up to the designed minimum distance , 1995, IEEE Trans. Inf. Theory.

[25]  Christoph Kirfel On the Clifford defect for special curves , 1996 .

[26]  Ruud Pellikaan,et al.  On decoding by error location and dependent sets of error positions , 1992, Discret. Math..

[27]  Tom Høholdt,et al.  Generalized Berlekamp-Massey decoding of algebraic-geometric codes up to half the Feng-Rao bound , 1994, IEEE Trans. Inf. Theory.

[28]  Victor K.-W. Wei,et al.  Generalized Hamming weights for linear codes , 1991, IEEE Trans. Inf. Theory.

[29]  Ruud Pellikaan,et al.  The minimum distance of codes in an array coming from telescopic semigroups , 1995, IEEE Trans. Inf. Theory.