The shift bound for cyclic, Reed-Muller and geometric Goppa codes
暂无分享,去创建一个
[1] Tadao Kasami,et al. New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.
[2] Carlos R. P. Hartmann,et al. Generalizations of the BCH Bound , 1972, Inf. Control..
[3] R. Pellikaan. On the existence of error-correcting pairs , 1996 .
[4] Victor K.-W. Wei,et al. Simplified understanding and efficient decoding of a class of algebraic-geometric codes , 1994, IEEE Trans. Inf. Theory.
[5] Iwan M. Duursma,et al. Decoding codes from curves and cyclic codes , 1993 .
[6] T. R. N. Rao,et al. A simple approach for construction of algebraic-geometric codes from affine plane curves , 1993, IEEE Trans. Inf. Theory.
[7] Marijn van Eupen,et al. On the minimum distance of ternary cyclic codes , 1993, IEEE Trans. Inf. Theory.
[8] Iwan M. Duursma,et al. Majority coset decoding , 1993, IEEE Trans. Inf. Theory.
[9] T. R. N. Rao,et al. Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.
[10] Pascale Charpin,et al. Studying the locator polynomials of minimum weight codewords of BCH codes , 1992, IEEE Trans. Inf. Theory.
[11] Carlos R. P. Hartmann,et al. On the minimum distance of certain reversible cyclic codes (Corresp.) , 1970, IEEE Trans. Inf. Theory.
[12] E. J. Weldon,et al. New generalizations of the Reed-Muller codes-II: Nonprimitive codes , 1968, IEEE Trans. Inf. Theory.
[13] Ruud Pellikaan,et al. On the Efficient Decoding of Algebraic-Geometric Codes , 1993 .
[14] Kees Roos,et al. A new lower bound for the minimum distance of a cyclic code , 1983, IEEE Trans. Inf. Theory.
[15] Gui Liang Feng,et al. A new procedure for decoding cyclic and BCH codes up to actual minimum distance , 1994, IEEE Trans. Inf. Theory.
[16] E. J. Weldon. Correction to "New Generalizations of the Reed-Muller Codes - Part II: Nonprimitive Codes" , 1968, IEEE Trans. Inf. Theory.
[17] Carlos Munuera,et al. On the generalized Hamming weights of geometric-Goppa codes , 1994, IEEE Trans. Inf. Theory.
[18] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[19] Ba-Zhong Shen,et al. Generation of matrices for determining minimum distance and decoding of algebraic-geometric codes , 1995, IEEE Trans. Inf. Theory.
[20] Ba-Zhong Shen,et al. A code decomposition approach for decoding cyclic and algebraic-geometric codes , 1995, IEEE Trans. Inf. Theory.
[21] P. Vijay Kumar,et al. On the weight hierarchy of geometric Goppa codes , 1994, IEEE Trans. Inf. Theory.
[22] Jean-Marie Goethals,et al. On Generalized Reed-Muller Codes and Their Relatives , 1970, Inf. Control..
[23] Richard M. Wilson,et al. On the minimum distance of cyclic codes , 1986, IEEE Trans. Inf. Theory.
[24] Tom Høholdt,et al. Fast decoding of algebraic-geometric codes up to the designed minimum distance , 1995, IEEE Trans. Inf. Theory.
[25] Christoph Kirfel. On the Clifford defect for special curves , 1996 .
[26] Ruud Pellikaan,et al. On decoding by error location and dependent sets of error positions , 1992, Discret. Math..
[27] Tom Høholdt,et al. Generalized Berlekamp-Massey decoding of algebraic-geometric codes up to half the Feng-Rao bound , 1994, IEEE Trans. Inf. Theory.
[28] Victor K.-W. Wei,et al. Generalized Hamming weights for linear codes , 1991, IEEE Trans. Inf. Theory.
[29] Ruud Pellikaan,et al. The minimum distance of codes in an array coming from telescopic semigroups , 1995, IEEE Trans. Inf. Theory.