Characterizations of InAs quantum dot lasers butt-joint coupled with silicon photonics waveguides

InAs quantum dot (QD) laser heterostructures are grown by molecular beam epitaxy (MBE) system on GaAs substrates and fabricated. The InAs QD lasers exhibit comparable properties of the state-of-the-art QD lasers with the threshold current density Jth and efficiency ηi of 475A/cm2 and 72.6%, respectively, at room temperature. The quantum dot laser emission is butt-joint coupled into silicon photonics waveguides by aligning the laser and silicon photonics chips with two translation stages. Due to the optical feedback to the laser cavity at the air/Si interface, the laser power self-pulsation and reduced threshold current density are observed. And the effective facet reflectivity, Reff, of 62.7% is obtained from the theoretically analysis of the laser characteristics. Furthermore, the silicon photonics waveguides interface is coated with the SiO2/TiO2 antireflection (AR) coating layers, and no laser performance interference is observed owing the reduced optical feedback.

[1]  P. Bhattacharya,et al.  Semiconductor Optoelectronic Devices , 1993 .

[2]  J. McInerney,et al.  Self-pulsations in strongly coupled asymmetric external cavity semiconductor lasers , 1990 .

[3]  Karthik Narayanan,et al.  Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides. , 2010, Optics express.

[4]  Xuezhe Zheng,et al.  High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links. , 2014, Optics express.

[5]  P. Dumon,et al.  Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology , 2005, Journal of Lightwave Technology.

[6]  R. O. Miles,et al.  Spectral Characteristics of Semiconductor Lasers with Optical Feedback , 1982 .

[7]  John E. Cunningham,et al.  Power-efficient III-V/silicon external cavity DBR lasers. , 2012, Optics express.

[8]  C. Tang,et al.  High‐frequency polarization self‐modulation and chaotic phenomena in external cavity semiconductor lasers , 1990 .

[9]  Yi Zhang,et al.  Quantum dot SOA/silicon external cavity multi-wavelength laser. , 2015, Optics express.

[10]  Jason T. S. Liao,et al.  Optical I/O technology for tera-scale computing , 2009, ISSCC 2009.

[11]  P. Bhattacharya,et al.  Characteristics of a high speed 1.22 μm tunnel injection p-doped quantum dot excited state laser , 2011 .

[12]  T. Kawanishi,et al.  Ultra-compact wavelength-tunable quantum-dot laser with silicon-photonics double ring filter , 2015 .

[13]  M. Notomi,et al.  Waveguides, resonators and their coupled elements in photonic crystal slabs. , 2004, Optics express.

[14]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[15]  D. Thomson,et al.  Hybrid III--V on Silicon Lasers for Photonic Integrated Circuits on Silicon , 2014 .

[16]  H. Cai,et al.  Instabilities in a grating feedback external cavity semiconductor laser. , 2008, Optics express.

[17]  S. Preble,et al.  High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding , 2015 .

[18]  P. Bhattacharya,et al.  High performance tunnel injection quantum dot comb laser , 2010 .

[19]  Qi Li,et al.  Quantum dot semiconductor optical amplifier/silicon external cavity laser for O-band high-speed optical communications , 2015 .

[20]  Y. Vlasov,et al.  Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. , 2003, Optics express.

[21]  Guo-Qiang Lo,et al.  Sagnac loop mirror and micro-ring based laser cavity for silicon-on-insulator. , 2014, Optics express.

[22]  Gunther Roelkens,et al.  Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  P. Bhattacharya,et al.  High Temperature Stable Operation of 1.3- $\mu$ m Quantum-Dot Laser Integrated With Single-Mode Tapered Si $_{3}$ N $_{4}$ Waveguide , 2012 .

[24]  Yasuhiko Arakawa,et al.  Silicon photonics for next generation system integration platform , 2013, IEEE Communications Magazine.

[25]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[26]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[27]  G. Lo,et al.  A single adiabatic microring-based laser in 220 nm silicon-on-insulator. , 2014, Optics express.