Endosymbiotic adaptations in three new bacterial species associated with Dictyostelium discoideum: Paraburkholderia agricolaris sp. nov., Paraburkholderia hayleyella sp. nov., and Paraburkholderia bonniea sp. nov

Here we give names to three new species of Paraburkholderia that can remain in symbiosis indefinitely in the spores of a soil dwelling eukaryote, Dictyostelium discoideum. The new species P. agricolaris sp. nov., P. hayleyella sp. nov., and P. bonniea sp. nov. are widespread across the eastern USA and were isolated as internal symbionts of wild-collected D. discoideum. We describe these sp. nov. using several approaches. Evidence that they are each a distinct new species comes from their phylogenetic position, average nucleotide identity, genome-genome distance, carbon usage, reduced length, cooler optimal growth temperature, metabolic tests, and their previously described ability to invade D. discoideum amoebae and form a symbiotic relationship. All three of these new species facilitate the prolonged carriage of food bacteria by D. discoideum, though they themselves are not food. Further studies of the interactions of these three new species with D. discoideum should be fruitful for understanding the ecology and evolution of symbioses.

[1]  Jan P. Meier-Kolthoff,et al.  TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy , 2019, Nature Communications.

[2]  Jae-Ho Shin,et al.  Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification , 2019, PloS one.

[3]  J. Strassmann,et al.  The specificity of Burkholderia symbionts in the social amoeba farming symbiosis: Prevalence, species, genetic and phenotypic diversity , 2019, Molecular ecology.

[4]  J. Strassmann,et al.  Symbiont location, host fitness, and possible coadaptation in a symbiosis between social amoebae and bacteria , 2018, eLife.

[5]  N. Shapiro,et al.  Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae , 2018, Genes.

[6]  J. Strassmann,et al.  Burkholderia bacteria use chemotaxis to find social amoeba Dictyostelium discoideum hosts , 2018, The ISME Journal.

[7]  Jonas S. Almeida,et al.  Alignment-free sequence comparison: benefits, applications, and tools , 2017, Genome Biology.

[8]  P. Vandamme,et al.  Comparative Genomics of Burkholderia singularis sp. nov., a Low G+C Content, Free-Living Bacterium That Defies Taxonomic Dissection of the Genus Burkholderia , 2017, Front. Microbiol..

[9]  N. Kyrpides,et al.  Genome Data Provides High Support for Generic Boundaries in Burkholderia Sensu Lato , 2017, Front. Microbiol..

[10]  S. Sousa,et al.  Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review , 2017, Genes.

[11]  M. Samadpour,et al.  Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. , 2016, International journal of systematic and evolutionary microbiology.

[12]  Mark A. Ragan,et al.  Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer , 2016, Scientific Reports.

[13]  L. Pritchard,et al.  Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens , 2016 .

[14]  Jörg Peplies,et al.  JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison , 2015, Bioinform..

[15]  J. Strassmann,et al.  Which phenotypic traits of Dictyostelium discoideum farmers are conferred by their bacterial symbionts? , 2016, Symbiosis.

[16]  J. Strassmann,et al.  Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria , 2015, Proceedings of the National Academy of Sciences.

[17]  Anthony R. Ives,et al.  An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data , 2015, BMC Genomics.

[18]  Gilbert GREUB,et al.  Amoebae as a tool to isolate new bacterial species, to discover new virulence factors and to study the host-pathogen interactions. , 2014, Microbial pathogenesis.

[19]  Radhey S. Gupta,et al.  Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species , 2014, Front. Genet..

[20]  M. Ragan,et al.  Inferring phylogenies of evolving sequences without multiple sequence alignment , 2014, Scientific Reports.

[21]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[22]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[23]  Robert A Edwards,et al.  Microbial genomic taxonomy , 2013, BMC Genomics.

[24]  Alexander Schönhuth,et al.  Discovering motifs that induce sequencing errors , 2013, BMC Bioinformatics.

[25]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[26]  J. Strassmann,et al.  Collection and cultivation of dictyostelids from the wild. , 2013, Methods in molecular biology.

[27]  Alexander F. Auch,et al.  Genome sequence-based species delimitation with confidence intervals and improved distance functions , 2013, BMC Bioinformatics.

[28]  Jonathan A. Eisen,et al.  Incorporating 16S Gene Copy Number Information Improves Estimates of Microbial Diversity and Abundance , 2012, PLoS Comput. Biol..

[29]  T. Herben,et al.  Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants , 2012, Proceedings of the Royal Society B: Biological Sciences.

[30]  J. Strassmann,et al.  Primitive agriculture in a social amoeba , 2011, Nature.

[31]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[32]  Stuart M. Brown,et al.  Diversity of 16S rRNA Genes within Individual Prokaryotic Genomes , 2010, Applied and Environmental Microbiology.

[33]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[34]  N. Moran,et al.  Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. , 2010, Annual review of entomology.

[35]  R. Rosselló-Móra,et al.  Shifting the genomic gold standard for the prokaryotic species definition , 2009, Proceedings of the National Academy of Sciences.

[36]  D. Raoult,et al.  Amoeba co-culture of soil specimens recovered 33 different bacteria, including four new species and Streptococcus pneumoniae. , 2009, Microbiology.

[37]  Eric P. Nawrocki,et al.  Structural rna homology search and alignment using covariance models , 2009 .

[38]  N. Moran,et al.  Genomics and evolution of heritable bacterial symbionts. , 2008, Annual review of genetics.

[39]  Ilia J Leitch,et al.  Genome size is a strong predictor of cell size and stomatal density in angiosperms. , 2008, The New phytologist.

[40]  S. Abbott,et al.  16S rRNA Gene Sequencing for Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls , 2007, Journal of Clinical Microbiology.

[41]  M. Pagel,et al.  Origin of avian genome size and structure in non-avian dinosaurs , 2007, Nature.

[42]  P. Vandamme,et al.  DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. , 2007, International journal of systematic and evolutionary microbiology.

[43]  K. Konstantinidis,et al.  Toward a More Robust Assessment of Intraspecies Diversity, Using Fewer Genetic Markers , 2006, Applied and Environmental Microbiology.

[44]  J. Ramos,et al.  Involvement of Cyclopropane Fatty Acids in the Response of Pseudomonas putida KT2440 to Freeze-Drying , 2006, Applied and Environmental Microbiology.

[45]  K. Konstantinidis,et al.  Genomic insights that advance the species definition for prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Joanna B. Goldberg,et al.  The multifarious, multireplicon Burkholderia cepacia complex , 2005, Nature Reviews Microbiology.

[47]  Michael Wagner,et al.  Amoebae as Training Grounds for Intracellular Bacterial Pathogens , 2005, Applied and Environmental Microbiology.

[48]  Y. Park,et al.  The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. , 2005, Microbiology.

[49]  P. de Vos,et al.  Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. , 2004, International journal of systematic and evolutionary microbiology.

[50]  S. Acinas,et al.  Divergence and Redundancy of 16S rRNA Sequences in Genomes with Multiple rrn Operons , 2004, Journal of bacteriology.

[51]  Tom Coenye,et al.  Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. , 2003, FEMS microbiology letters.

[52]  P. de Vos,et al.  Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. , 2002, Systematic and applied microbiology.

[53]  T. Gregory The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. , 2001, Blood cells, molecules & diseases.

[54]  P. Vandamme,et al.  Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. , 2001, International journal of systematic and evolutionary microbiology.

[55]  J. Haddock,et al.  Phenotypic and Phylogenetic Characterization of Burkholderia (Pseudomonas) sp. Strain LB400 , 2001, Current Microbiology.

[56]  T. Schmidt,et al.  rRNA Operon Copy Number Reflects Ecological Strategies of Bacteria , 2000, Applied and Environmental Microbiology.

[57]  J. Cronan,et al.  Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli , 1999, Molecular microbiology.

[58]  S. Wilkinson,et al.  Lipids and fatty acids of Burkholderia and Ralstonia species , 1999 .

[59]  E. Belarbi,et al.  Rapid simultaneous lipid extraction and transesterification for fatty acid analyses , 1998 .

[60]  B. Efron,et al.  Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[62]  Takayuki Ezaki,et al.  Proposal of Burkholderia gen. nov. and Transfer of Seven Species of the Genus Pseudomonas Homology Group II to the New Genus, with the Type Species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. , 1992, Microbiology and immunology.

[63]  J. B. Guckert,et al.  Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts , 1986 .

[64]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[65]  J. Cronan Phospholipid Alterations During Growth of Escherichia coli , 1968, Journal of bacteriology.

[66]  V. A. Knivett,et al.  Some factors affecting cyclopropane acid formation in Escherichia coli. , 1965, The Biochemical journal.

[67]  M. Sussman ON THE RELATION BETWEEN GROWTH AND MORPHOGENESIS IN THE SLIME MOLD DICTYOSTELIUM DISCOIDEUM , 1956 .

[68]  G. H. Freeman,et al.  Note on an exact treatment of contingency, goodness of fit and other problems of significance. , 1951, Biometrika.