Efficient approximation of functions of some large matrices by partial fraction expansions

ABSTRACT Some important applicative problems require the evaluation of functions Ψ of large and sparse and/or localized matrices A. Popular and interesting techniques for computing and , where is a vector, are based on partial fraction expansions. However, some of these techniques require solving several linear systems whose matrices differ from A by a complex multiple of the identity matrix I for computing or require inverting sequences of matrices with the same characteristics for computing . Here we study the use and the convergence of a recent technique for generating sequences of incomplete factorizations of matrices in order to face with both these issues. The solution of the sequences of linear systems and approximate matrix inversions above can be computed efficiently provided that shows certain decay properties. These strategies have good parallel potentialities. Our claims are confirmed by numerical tests.

[1]  N. Higham,et al.  Computing A, log(A) and Related Matrix Functions by Contour Integrals , 2007 .

[2]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[3]  Luciano Lopez,et al.  Acceleration techniques for approximating the matrix exponential , 2008 .

[4]  Igor Moret,et al.  The restarted shift‐and‐invert Krylov method for matrix functions , 2014, Numer. Linear Algebra Appl..

[5]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[6]  A. Laub,et al.  Padé error estimates for the logarithm of a matrix , 1989 .

[7]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[8]  C. Canuto,et al.  On the decay of the inverse of matrices that are sum of Kronecker products , 2013, 1312.6631.

[9]  N. Higham Functions Of Matrices , 2008 .

[10]  Daniele Bertaccini,et al.  Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications , 2018 .

[11]  Gérard Meurant,et al.  A Review on the Inverse of Symmetric Tridiagonal and Block Tridiagonal Matrices , 1992, SIAM J. Matrix Anal. Appl..

[12]  Daniele Bertaccini,et al.  Approximate Inverse Preconditioning for Shifted Linear Systems , 2003 .

[13]  Marco Vianello,et al.  Efficient approximation of the exponential operator for discrete 2D advection–diffusion problems , 2003, Numer. Linear Algebra Appl..

[14]  Daniele Bertaccini,et al.  Sparse approximate inverse preconditioners on high performance GPU platforms , 2016, Comput. Math. Appl..

[15]  Valeria Simoncini,et al.  A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..

[16]  Ya Yan Lu,et al.  Computing the logarithm of a symmetric positive definite matrix , 1998 .

[17]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[18]  M. Eiermann,et al.  Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .

[19]  Igor Moret Rational Lanczos approximations to the matrix square root and related functions , 2009, Numer. Linear Algebra Appl..

[20]  G. Golub,et al.  Bounds for the Entries of Matrix Functions with Applications to Preconditioning , 1999 .

[21]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[22]  Daniele Bertaccini,et al.  Updating preconditioners for nonlinear deblurring and denoising image restoration , 2010 .

[23]  Roberto Garrappa,et al.  On the use of matrix functions for fractional partial differential equations , 2011, Math. Comput. Simul..

[24]  M. Benzi,et al.  DECAY BOUNDS AND ( ) ALGORITHMS FOR APPROXIMATING FUNCTIONS OF SPARSE MATRICES , 2007 .

[25]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[26]  D. Bertaccini EFFICIENT PRECONDITIONING FOR SEQUENCES OF PARAMETRIC COMPLEX SYMMETRIC LINEAR SYSTEMS , 2004 .

[27]  Reinhard Nabben,et al.  Decay Rates of the Inverse of Nonsymmetric Tridiagonal and Band Matrices , 1999, SIAM J. Matrix Anal. Appl..

[28]  Y. Saad,et al.  Computing Exp(−τ A)b with Laguerre Polynomials * , 2010 .

[29]  Neville J. Ford,et al.  On the Decay of the Elements of Inverse Triangular Toeplitz Matrices , 2013, SIAM J. Matrix Anal. Appl..

[30]  R. Varga,et al.  Extended numerical computations on the “1/9” conjecture in rational approximation theory , 1984 .

[31]  Valeria Simoncini,et al.  Acceleration Techniques for Approximating the Matrix Exponential Operator , 2008, SIAM J. Matrix Anal. Appl..

[32]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[33]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[34]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[35]  Valeria Simoncini,et al.  Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..

[36]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[37]  Y. Saad,et al.  Computing exp(-tou;A)b with laguerre polynomials , 2010 .

[38]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[39]  Daniele Bertaccini,et al.  Interpolating preconditioners for the solution of sequence of linear systems , 2016, Comput. Math. Appl..

[40]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[41]  R. Varga,et al.  Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .

[42]  Michele Benzi,et al.  Orderings for Factorized Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[43]  Arieh Iserles How Large is the Exponential of a Banded Matrix , 1999 .

[44]  Arno C. N. van Duin,et al.  Scalable Parallel Preconditioning with the Sparse Approximate Inverse of Triangular Matrices , 1999, SIAM J. Matrix Anal. Appl..

[45]  Arno C. N. van,et al.  Scalable Parallel Preconditioning with the Sparse Approximate Inverse of Triangular Matrices , 1999 .

[46]  M. Benzi Localization in Matrix Computations: Theory and Applications , 2016 .

[47]  Daniele Bertaccini,et al.  Nonsymmetric Preconditioner Updates in Newton-Krylov Methods for Nonlinear Systems , 2011, SIAM J. Sci. Comput..

[48]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[49]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[50]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[51]  Nicholas J. Higham,et al.  Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..