Enhanced Strength and Toughness in Al-Mg-Si Alloys with Addition of Cr, Mn, and Cu Elements

[1]  Z. Fan,et al.  Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting , 2021 .

[2]  Z. Fan,et al.  Microstructure, mechanical properties and corrosion resistance of A356 aluminum/AZ91D magnesium bimetal prepared by a compound casting combined with a novel Ni-Cu composite interlayer , 2021 .

[3]  Yun-lai Deng,et al.  Microstructures and strengthening mechanisms of high Fe containing Al–Mg–Si–Mn–Fe alloys with Mg, Si and Mn modified , 2020 .

[4]  Qing Liu,et al.  Effect of combined addition of Ag and Cu on the precipitation behavior for an Al-Mg-Si alloy , 2020 .

[5]  Hongwei Liu,et al.  Effect of recrystallization on plasticity, fracture toughness and stress corrosion cracking of a high-alloying Al-Zn-Mg-Cu alloy , 2020 .

[6]  N. Parson,et al.  Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing , 2020, Journal of Materials Science & Technology.

[7]  Z. Fan,et al.  Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting , 2020 .

[8]  C. Blanc,et al.  Influence of equal-channel angular pressing on the microstructure and corrosion behaviour of a 6xxx aluminium alloy for automotive conductors , 2020 .

[9]  Wenbin Tu,et al.  Effect of Sn and Cu addition on the precipitation and hardening behavior of Al-1.0Mg-0.6Si alloy , 2020 .

[10]  Jianguo Tang,et al.  Effects of Combined Additions of Mn and Zr on Dispersoid Formation and Recrystallization Behavior in Al-Zn-Mg Alloys , 2019, Metallurgical and Materials Transactions A.

[11]  P. Randelzhofer,et al.  Effect of Zr, Cr and Sc on the Al–Mg–Si–Mn high-pressure die casting alloys , 2019, Materials Science and Engineering: A.

[12]  J. Embury,et al.  The effect of manganese on the microstructure and tensile response of an Al-Mg-Si alloy , 2019, Materials Science and Engineering: A.

[13]  D. Schryvers,et al.  Study of the Q′ (Q)-phase precipitation in Al–Mg–Si–Cu alloys by quantification of atomic-resolution transmission electron microscopy images and atom probe tomography , 2019, Journal of Materials Science.

[14]  L. Zhuang,et al.  Influence of Zn contents on precipitation and corrosion of Al-Mg-Si-Cu-Zn alloys for automotive applications , 2019, Journal of Alloys and Compounds.

[15]  A. Fortini,et al.  Evaluation of the impact behaviour of AlSi10Mg alloy produced using laser additive manufacturing , 2019, Materials Science and Engineering: A.

[16]  Shu-hao Deng,et al.  Microstructures and fatigue behavior of metal-inert-gas-welded joints for extruded Al-Mg-Si alloy , 2019, Materials Science and Engineering: A.

[17]  Guoqun Zhao,et al.  Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation , 2019, Journal of Alloys and Compounds.

[18]  Shang Zhu,et al.  Effects of Zn addition on the age hardening behavior and precipitation evolution of an Al-Mg-Si-Cu alloy , 2018, Materials Characterization.

[19]  Ojo Olatunji Oladimeji,et al.  Effect of Mn and Cr on structure and mechanical properties of Al-10%Mg-0.1%Ti alloy , 2018, Vacuum.

[20]  Xiaozhi Wu,et al.  Special segregation of Cu on the habit plane of lath-like β′ and QP2 precipitates in Al-Mg-Si-Cu alloys , 2018, Scripta Materialia.

[21]  Q. Du,et al.  The interaction between Mn and Fe on the precipitation of Mn/Fe dispersoids in Al-Mg-Si-Mn-Fe alloys , 2018, Scripta Materialia.

[22]  Zhe Wang,et al.  Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al-Mg2Si in-situ composite , 2018 .

[23]  Q. Liu,et al.  The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy , 2018 .

[24]  T. Carlberg,et al.  In-situ study of phase transformations during homogenization of 6005 and 6082 Al alloys , 2017 .

[25]  T. Lui,et al.  Enhancing the tensile yield strength of A6082 aluminum alloy with rapid heat solutionizing , 2017 .

[26]  Yun-lai Deng,et al.  Coarse Grain Layer on Stress Corrosion Cracking Resistance of Al–Zn–Mg Alloy , 2017 .

[27]  S. Qiu,et al.  Intergranular crack during fatigue in Al-Mg-Si aluminum alloy thin extrusions , 2017 .

[28]  Bin Wang,et al.  Effect of Cu content on precipitation and age-hardening behavior in Al-Mg-Si-xCu alloys , 2017 .

[29]  N. Saintier,et al.  Interactions between grain size and geometrical defects in pure aluminium in the high cycle fatigue regime , 2017 .

[30]  A. Pola,et al.  Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy , 2017 .

[31]  Ahmad Wasim,et al.  Predicting the tensile strength, impact toughness, and hardness of friction stir-welded AA6061-T6 using response surface methodology , 2016 .

[32]  Bin Wang,et al.  Effect of grain size on fatigue-crack growth in 2524 aluminium alloy , 2016 .

[33]  Y. Estrin,et al.  The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys , 2016 .

[34]  Shichen Li,et al.  The Influence of Composition on the Clustering and Precipitation Behavior of Al-Mg-Si-Cu Alloys , 2016, Metallurgical and Materials Transactions A.

[35]  H. Liao,et al.  Dynamic precipitation of Mg2Si induced by temperature and strain during hot extrusion and its impact on microstructure and mechanical properties of near eutectic Al–Si–Mg–V alloy , 2014 .

[36]  K. Chen,et al.  Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys , 2014 .

[37]  R. Holmestad,et al.  Improving Thermal Stability in Cu-Containing Al-Mg-Si Alloys by Precipitate Optimization , 2014, Metallurgical and Materials Transactions A.

[38]  N. Birbilis,et al.  General aspects related to the corrosion of 6xxx series aluminium alloys: exploring the influence of Mg/Si ratio and Cu , 2013 .

[39]  J. Hirsch,et al.  Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications , 2013 .

[40]  W. Marsden I and J , 2012 .

[41]  I. Singh,et al.  Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy , 2011 .

[42]  J. de Wit,et al.  The influence of copper content on intergranular corrosion of model AlMgSi(Cu) alloys , 2008 .

[43]  G. Svenningsen,et al.  Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy , 2006 .

[44]  H. Weiland,et al.  The effect of predeformation on the β″ and β′ precipitates and the role of Q′ phase in an Al–Mg–Si alloy; AA6022 , 2005 .

[45]  J. Embury,et al.  The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030 , 2003 .

[46]  Fred J. Vermolen,et al.  A Model of the β-AlFeSi to α-Al(FeMn)Si Transformation in Al-Mg-Si Alloys , 2003 .

[47]  D. Lloyd,et al.  On the precipitation-hardening behavior of the Al−Mg−Si−Cu alloy AA6111 , 2003 .

[48]  Xiaogang Wang,et al.  On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111 , 2003 .

[49]  K. Hono,et al.  The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si , 2001 .

[50]  H. W. Zandbergen,et al.  Atomic model for GP-zones in a 6082 Al–Mg–Si system , 2001 .

[51]  N. Ryum,et al.  Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si-alloys , 2000 .