Comparative proteomic analysis of Listeria monocytogenes tolerance to bile stress

[1]  Jess H. Leber,et al.  The novel Listeria monocytogenes bile sensor BrtA controls expression of the cholic acid efflux pump MdrT , 2011, Molecular microbiology.

[2]  T. Abee,et al.  Contribution of Listeria monocytogenes RecA to acid and bile survival and invasion of human intestinal Caco-2 cells. , 2011, International journal of medical microbiology : IJMM.

[3]  P. Horvatovich,et al.  Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance , 2011, BMC Microbiology.

[4]  S. Koval,et al.  Mutation of a Broadly Conserved Operon (RL3499-RL3502) from Rhizobium leguminosarum Biovar viciae Causes Defects in Cell Morphology and Envelope Integrity , 2011, Journal of bacteriology.

[5]  Li Wang,et al.  SigB plays a major role in Listeria monocytogenes tolerance to bile stress. , 2011, International journal of food microbiology.

[6]  D. Greco,et al.  Proteomics and Transcriptomics Characterization of Bile Stress Response in Probiotic Lactobacillus rhamnosus GG* , 2010, Molecular & Cellular Proteomics.

[7]  C. Hill,et al.  Investigation of the Mechanisms by Which Listeria monocytogenes Grows in Porcine Gallbladder Bile , 2010, Infection and Immunity.

[8]  W. Eisenreich,et al.  Pyruvate Carboxylase Plays a Crucial Role in Carbon Metabolism of Extra- and Intracellularly Replicating Listeria monocytogenes , 2010, Journal of bacteriology.

[9]  Masaru Tomita,et al.  Unbiased Quantitation of Escherichia coli Membrane Proteome Using Phase Transfer Surfactants* , 2009, Molecular & Cellular Proteomics.

[10]  R. Sleator,et al.  Specific Osmolyte Transporters Mediate Bile Tolerance in Listeria monocytogenes , 2009, Infection and Immunity.

[11]  M. Desvaux,et al.  Insight into the core and variant exoproteomes of Listeria monocytogenes species by comparative subproteomic analysis , 2009, Proteomics.

[12]  M. Vergassola,et al.  The Listeria transcriptional landscape from saprophytism to virulence , 2009, Nature.

[13]  C. Buchrieser,et al.  In Vivo Transcriptional Profiling of Listeria monocytogenes and Mutagenesis Identify New Virulence Factors Involved in Infection , 2009, PLoS pathogens.

[14]  B. Wanner,et al.  The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. , 2008, FEMS microbiology reviews.

[15]  Jiping Zeng,et al.  Helicobacter pylori protein response to human bile stress. , 2008, Journal of medical microbiology.

[16]  S. Haas,et al.  Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e σB regulon , 2008, BMC Microbiology.

[17]  M. Wiedmann,et al.  Comparative Analysis of the σB-Dependent Stress Responses in Listeria monocytogenes and Listeria innocua Strains Exposed to Selected Stress Conditions , 2007, Applied and Environmental Microbiology.

[18]  Birgitte Stuer-Lauridsen,et al.  Adaptation and Response of Bifidobacterium animalis subsp. lactis to Bile: a Proteomic and Physiological Approach , 2007, Applied and Environmental Microbiology.

[19]  Marc Lecuit Human listeriosis and animal models. , 2007, Microbes and infection.

[20]  M. Raftery,et al.  Wolinella succinogenes response to ox-bile stress , 2007, Antonie van Leeuwenhoek.

[21]  G. Mendz,et al.  MiniReview: bioinformatic study of bile responses in Campylobacterales. , 2007, FEMS immunology and medical microbiology.

[22]  Edward M. Fox,et al.  Campylobacter jejuni response to ox-bile stress. , 2007, FEMS immunology and medical microbiology.

[23]  A. Margolles,et al.  The F1F0-ATPase of Bifidobacterium animalis is involved in bile tolerance. , 2006, Environmental microbiology.

[24]  M. Kleerebezem,et al.  DNA micro‐array‐based identification of bile‐responsive genes in Lactobacillus plantarum , 2006, Journal of applied microbiology.

[25]  Colin Hill,et al.  Bile Salt Hydrolase Activity in Probiotics , 2006, Applied and Environmental Microbiology.

[26]  P. Cossart,et al.  Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. , 2005, FEMS microbiology letters.

[27]  C. Hill,et al.  The interaction between bacteria and bile. , 2005, FEMS microbiology reviews.

[28]  A. Margolles,et al.  Proteomic Analysis of Global Changes in Protein Expression during Bile Salt Exposure of Bifidobacterium longum NCIMB 8809 , 2005, Journal of bacteriology.

[29]  O. Pellegrini,et al.  Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E , 2005, Nucleic acids research.

[30]  B. Kallipolitis,et al.  The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. , 2005, Microbiology.

[31]  R. Sleator,et al.  Contribution of Three Bile-Associated Loci, bsh, pva, and btlB, to Gastrointestinal Persistence and Bile Tolerance of Listeria monocytogenes , 2005, Infection and Immunity.

[32]  R. Sleator,et al.  A PrfA‐regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes , 2004, Molecular microbiology.

[33]  M. Wiedmann,et al.  Sigma(B)-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. , 2003, Microbiology.

[34]  C. Hill,et al.  Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance , 2002, Applied and Environmental Microbiology.

[35]  C. Buchrieser,et al.  Listeria monocytogenes bile salt hydrolase is a PrfA‐regulated virulence factor involved in the intestinal and hepatic phases of listeriosis , 2002, Molecular microbiology.

[36]  L. Gautier,et al.  Comparative Genomics of Listeria Species , 2001, Science.

[37]  E. Dassa,et al.  The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. , 2001, Research in microbiology.

[38]  T. Hoshino,et al.  Contribution of Cysteine Desulfurase (NifS Protein) to the Biotin Synthase Reaction of Escherichia coli , 2000, Journal of bacteriology.

[39]  L. Phan-Thanh,et al.  Acid responses of Listeria monocytogenes. , 2000, International journal of food microbiology.

[40]  M. Yvon,et al.  Genetic Characterization of the Major Lactococcal Aromatic Aminotransferase and Its Involvement in Conversion of Amino Acids to Aroma Compounds , 1999, Applied and Environmental Microbiology.

[41]  A. Hofmann,et al.  Bile Acids: The Good, the Bad, and the Ugly. , 1999, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[42]  H. Bouwer,et al.  Pathogenicity and Immunogenicity of aListeria monocytogenes Strain That Requiresd-Alanine for Growth , 1998, Infection and Immunity.

[43]  C. Czuprynski,et al.  Multiplication of Listeria monocytogenes in a murine hepatocyte cell line , 1993, Infection and immunity.

[44]  K. Makino,et al.  Molecular analysis of the phoH gene, belonging to the phosphate regulon in Escherichia coli , 1993, Journal of bacteriology.

[45]  E. Johnson,et al.  Development of an improved chemically defined minimal medium for Listeria monocytogenes , 1991, Applied and environmental microbiology.

[46]  R. Schoenfeld,et al.  Comparative Genomics of Listeria Species , 1976 .

[47]  Hill Mj Action of Bile Salts on Bacterial Cell Walls , 1967 .

[48]  M. Hill Action of Bile Salts on Bacterial Cell Walls , 1967, Nature.