All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope

A. Heijboer | I. Palma | A. Trovato | G. Anton | U. Katz | H. Glotin | F. Fassi | Y. Tayalati | R. Cherkaoui El Moursli | S. Basa | P. Gay | A. Capone | Y. Hello | A. Deschamps | J. Carr | P. Coyle | B. Vallage | J. Zúñiga | M. Circella | A. Coleiro | D. Dornic | V. Kulikovskiy | B. Baret | S. Hallmann | S. Navas | G. Riccobene | D. Lefèvre | J. Brunner | V. Bertin | L. Caramete | J. Hernández-Rey | J. Coelho | C. Racca | R. Lahmann | S. Loucatos | A. Marinelli | S. Biagi | R. Bruijn | A. Albert | M. Anghinolfi | J. Aubert | M. Bouwhuis | R. Coniglione | C. Distefano | K. Graf | M. Jong | A. Kouchner | M. Marcelin | A. Margiotta | E. Nezri | P. Piattelli | V. Popa | T. Pradier | P. Sapienza | M. Spurio | T. Stolarczyk | M. Taiuti | J. Zornoza | G. Bonis | T. Chiarusi | F. Schüssler | J. Hößl | E. Leonora | V. Elewyck | G. Pǎvǎlaş | M. Kadler | H. Costantini | J. Busto | T. Eberl | I. Kreykenbohm | J. Martínez-Mora | M. Ardid | J. Wilms | O. Kalekin | C. Donzaud | H. Haren | V. Giordano | D. Samtleben | A. Enzenhöfer | A. Creusot | D. Drouhin | P. Migliozzi | D. Vivolo | M. André | T. Avgitas | J. Barrios-Martí | R. Bormuth | S. Celli | D. Elsässer | I. Felis | L. Fusco | J. Hofestädt | C. Hugon | G. Illuminati | C. James | M. Jongen | D. Kiessling | M. Kreter | C. Lachaud | K. Melis | T. Michael | A. Moussa | C. Pellegrino | C. Perrina | M. Saldaña | M. Sanguineti | C. Sieger | A. Sánchez-Losa | D. Turpin | C. Tönnis | B. Belhorma | A. Domi | I. Bojaddaini | F. Versari | A. Díaz | Mukharbek Organokov | L. Quinn | S. Bourret | N. Khayati | A. Ettahiri | T. Grégoire | M. Lotze | R. Mele | I. Salvadori | A. Vizzoca | H. Brânzaş | R. Gracia Ruiz | C. James

[1]  Bing Zhang,et al.  SCATTER BROADENING OF PULSARS AND IMPLICATIONS ON THE INTERSTELLAR MEDIUM TURBULENCE , 2016, Study on Magnetohydrodynamic Turbulence and Its Astrophysical Applications.

[2]  A. Heijboer,et al.  First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope , 2017, 1706.01857.

[3]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[4]  B. A. Boom,et al.  Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube , 2017, 1703.06298.

[5]  A. Heijboer,et al.  Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope , 2016, The European Physical Journal C.

[6]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[7]  M. Gerin,et al.  HERSCHEL/HIFI SPECTRAL MAPPING OF C+, CH+, AND CH IN ORION BN/KL: THE PREVAILING ROLE OF ULTRAVIOLET IRRADIATION IN CH+ FORMATION , 2016, 1604.05805.

[8]  A. Margiotta,et al.  The Run-by-Run Monte Carlo simulation for the ANTARES experiment , 2016 .

[9]  P. Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[10]  J. Silk,et al.  ULTRAHIGH-ENERGY COSMIC RAYS AND BLACK HOLE MERGERS , 2016, 1602.06961.

[11]  I. Shoemaker,et al.  ULTRAFAST OUTFLOWS FROM BLACK HOLE MERGERS WITH A MINIDISK , 2016, 1602.06938.

[12]  Y. Wang,et al.  High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube , 2016, 1602.05411.

[13]  Davide Lazzati,et al.  SHORT GAMMA-RAY BURSTS FROM THE MERGER OF TWO BLACK HOLES , 2016, 1602.05140.

[14]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[15]  A. Heijboer,et al.  Optical and X-ray early follow-up of ANTARES neutrino alerts , 2015, 1508.01180.

[16]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[17]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[18]  A. Margiotta Common simulation tools for large volume neutrino detectors , 2013 .

[19]  A. Heijboer,et al.  SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE , 2012, 1207.3105.

[20]  S. Cecchini,et al.  The positioning system of the ANTARES Neutrino Telescope , 2012, 1202.3894.

[21]  N. Gehrels,et al.  Gamma-Ray Bursts , 2016, Stars and Stellar Processes.

[22]  J. R. Hubbard,et al.  ANTARES: the first undersea neutrino telescope , 2011 .

[23]  S. Márka,et al.  Bounding the Time Delay between High-energy Neutrinos and Gravitational-wave Transients from Gamma-ray Bursts , 2011, 1101.4669.

[24]  A. Beloborodov Collisional mechanism for gamma‐ray burst emission , 2009, 0907.0732.

[25]  J. Dumm,et al.  Methods for point source analysis in high energy neutrino telescopes , 2008, 0801.1604.

[26]  et al,et al.  The data acquisition system for the ANTARES Neutrino Telescope , 2006, astro-ph/0610029.

[27]  A. Kappes,et al.  Potential Neutrino Signals from Galactic γ-Ray Sources , 2006 .

[28]  A. Mazure,et al.  Time Calibration of the ANTARES Neutrino Telescope , 2003, 1012.2204.

[29]  J. Bahcall,et al.  HIGH ENERGY NEUTRINOS FROM COSMOLOGICAL GAMMA-RAY BURST FIREBALLS , 1997, astro-ph/9701231.