Correlated Monte Carlo wave functions for the atoms He through Ne

We apply the variational Monte Carlo method to the atoms He through Ne. Our trial wave function is of the form introduced by Boys and Handy. We use the Monte Carlo method to calculate the first and second derivatives of an unreweighted variance and apply Newton’s method to minimize this variance. We motivate the form of the correlation function using the local current conservation arguments of Feynman and Cohen. Using a self‐consistent field wave function multiplied by a Boys and Handy correlation function, we recover a large fraction of the correlation energy of these atoms. We give the value of all variational parameters necessary to reproduce our wave functions. The method can be extended easily to other atoms and to molecules.

[1]  H. Conroy Molecular Schrödinger Equation. III. Calculation of Ground‐State Energies by Extrapolation , 1964 .

[2]  H. Shull,et al.  ELECTRONIC CORRELATION ENERGY IN 3- AND 4- ELECTRON ATOMS. Technical Note No. 32 , 1959 .

[3]  Enrico Clementi,et al.  Correlation Energy in Atomic Systems. IV. Degeneracy Effects , 1966 .

[4]  E. C. Curtis,et al.  Local-Energy Method in Electronic Energy Calculations , 1960 .

[5]  Zhiwei Sun,et al.  Optimized trial functions for quantum Monte Carlo , 1990 .

[6]  Pieper,et al.  Variational Monte Carlo calculations of ground states of liquid 4He and 3He drops. , 1986, Physical review. B, Condensed matter.

[7]  N. Handy,et al.  A first solution, for LiH, of a molecular transcorrelated wave equation by means of restricted numerical integration , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  N. Handy Energies and Expectation Values for Be by the Transcorrelated Method , 1969 .

[9]  Peter R. Taylor,et al.  A full CI treatment of Ne atom - a benchmark calculation performed on the NAS CRAY 2 , 1986 .

[10]  Malvin H. Kalos,et al.  Structure of the ground state of a fermion fluid , 1981 .

[11]  M. H. Kalos,et al.  Monte Carlo variational study of Be: A survey of correlated wave functions , 1982 .

[12]  N. Handy Towards an understanding of the form of correlated wavefunctions for atoms , 1973 .

[13]  N. Handy,et al.  A condition to remove the indeterminacy in interelectronic correlation functions , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  N. Handy,et al.  A calculation for the energies and wavefunctions for states of neon with full electronic correlation accuracy , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  Wilson,et al.  Optimized trial wave functions for quantum Monte Carlo calculations. , 1988, Physical review letters.

[16]  David M. Ceperley,et al.  Fixed-node quantum Monte Carlo for molecules , 1982 .

[17]  Enrico Clementi,et al.  Correlation Energy in Atomic Systems. V. Degeneracy Effects for the Second‐Row Atoms , 1968 .

[18]  David Fincham,et al.  Computer simulation studies in condensed matter physics. Recent developments , 1990 .

[19]  Richard A. Friesner,et al.  Solution of self-consistent field electronic structure equations by a pseudospectral method , 1985 .

[20]  Kevin Schmidt,et al.  New variational wave function for liquid He3 , 1979 .

[21]  P. Reynolds,et al.  Monte Carlo study of electron correlation functions for small molecules , 1989 .

[22]  James B. Anderson,et al.  Quantum chemistry by random walk: Importance sampling for H+3 , 1981 .

[23]  K. Jankowski,et al.  Application of symmetry-adapted pair functions in atomic structure calculations: A variational-perturbation treatment of the Ne atom , 1980 .

[24]  H. Conroy Molecular Schrödinger Equation. II. Monte Carlo Evaluation of Integrals , 1964 .

[25]  N. Handy,et al.  Quantum Monte Carlo calculations on Be and LiH , 1985 .

[26]  N. Handy,et al.  CI-Hylleraas variational calculation on the ground state of the neon atom , 1976 .

[27]  M. H. Kalos,et al.  A new look at correlation energy in atomic and molecular systems. II. The application of the Green’s function Monte Carlo method to LiH , 1982 .

[28]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[29]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .

[30]  M. Yoshimine,et al.  Configuration-interaction study of atoms. I. Correlation energies of B, C, N, O, F, and Ne , 1974 .

[31]  Richard Phillips Feynman,et al.  Energy Spectrum of the Excitations in Liquid Helium , 1956 .

[32]  N. Handy,et al.  The determination of energies and wavefunctions with full electronic correlation , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.