Three-Dimensional Discontinuous Galerkin h/p Adaptive Numerical Solutions for Compressible Flows

High order discontinuous Galerkin (DG) discretizations possess features making them suitable for computations of three dimensional complex flows with shocks. A key element that would make the DG method more attractive for such numerical simulations, is application of limiting procedures that ensure accurate capturing of discontinuities for three-dimensional complex flows in domains with nontrivial geometry discretized with unstructured meshes. Towards this end, a unified limiting procedure of DG discretizations in unstructured meshes is presented. Increased order of expansion and adaptive mesh refinement is introduced in the context of h/p–adaptivity in order to locally enhance resolution for three dimensional flow simulations that include discontinuities and complex flow features. Numerical results demonstrate that adaptive refinement increases the computational efficiency and the numerical accuracy of the DG method without compromising or sacrificing parallel performance.

[1]  Hong Luo,et al.  A Reconstructed Discontinuous Galerkin Method Based on a Hierarchical Hermite WENO Reconstruction for Compressible Flows on Tetrahedral Grids , 2012 .

[2]  Konstantinos T. Panourgias,et al.  A limiting approach for DG discretizations on mixed type meshes , 2015 .

[3]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[4]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[5]  M. Y. Hussaini,et al.  An efficient implicit discontinuous spectral Galerkin method , 2001 .

[6]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[7]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[8]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[9]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[10]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[11]  Li Wang,et al.  Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations , 2006, J. Comput. Phys..

[12]  John A. Ekaterinaris,et al.  High-order accurate, low numerical diffusion methods for aerodynamics , 2005 .

[13]  Z. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids , 2002 .

[14]  J. Ekaterinaris,et al.  High-Order Discontinuous Galerkin Discretizations for Computational Aeroacoustics in Complex Domains , 2006 .

[15]  Jean-François Remacle,et al.  Aspects of discontinuous Galerkin methods for hyperbolic conservation laws , 2002 .

[16]  Dmitri Kuzmin,et al.  Hierarchical slope limiting in explicit and implicit discontinuous Galerkin methods , 2014, J. Comput. Phys..

[17]  Chi-Wang Shu,et al.  A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters , 2005, SIAM J. Sci. Comput..

[18]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[19]  Marcel Vinokur,et al.  Spectral difference method for unstructured grids I: Basic formulation , 2006, J. Comput. Phys..

[20]  Zhi Jian Wang,et al.  On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods , 2014, J. Comput. Phys..

[21]  Wagdi G. Habashi,et al.  Finite Element Adaptive Method for Hypersonic Thermochemical Nonequilibrium Flows , 1997 .

[22]  Per-Olof Persson,et al.  A high-order discontinuous Galerkin method for fluid-structure interaction with efficient implicit-explicit time stepping , 2014, J. Comput. Phys..

[23]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[24]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[25]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[26]  Jun Zhu,et al.  Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes , 2013, J. Comput. Phys..

[27]  J. Ekaterinaris,et al.  Discontinuous-Galerkin Discretizations for Viscous Flow Problems in Complex Domains , 2005 .

[28]  Z. Wang High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .

[29]  Francis X. Giraldo,et al.  Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations , 2014, J. Comput. Phys..

[30]  Konstantinos T. Panourgias,et al.  High‐resolution p‐adaptive DG simulations of flows with moving shocks , 2014 .

[31]  H. van der Ven,et al.  Discontinuous Galerkin Finite Element Method with Anisotropic Local Grid Refinement for Inviscid Compressible Flows , 1998 .

[32]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[33]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[34]  Jennifer K. Ryan,et al.  Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes , 2014, J. Comput. Phys..

[35]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[36]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[37]  Mária Lukácová-Medvid'ová,et al.  Adaptive discontinuous evolution Galerkin method for dry atmospheric flow , 2014, J. Comput. Phys..

[38]  Marcel Vinokur,et al.  Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional systems , 2006, J. Comput. Phys..

[39]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[40]  Chi-Wang Shu TVB uniformly high-order schemes for conservation laws , 1987 .

[41]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[42]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[43]  Dimitri J. Mavriplis,et al.  Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[44]  Pierre Sagaut,et al.  A problem-independent limiter for high-order Runge—Kutta discontinuous Galerkin methods , 2001 .

[45]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[46]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .