Equivalence of a random intersection graph and G(n,p)

We solve the conjecture of Fill, Scheinerman and Singer-Cohen (Random Struct Algorithms 16 (2000), 156–176) and show equivalence of sharp threshold functions of a random intersection graph ${\cal g}$ **image** (n,m,p) with m ≥ n3 and a graph G(n,p) with independent edges. Moreover we prove sharper equivalence results under some additional assumptions. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2011 © 2011 Wiley Periodicals, Inc.

[1]  Katarzyna Rybarczyk,et al.  Poisson Approximation of the Number of Cliques in Random Intersection Graphs , 2010, Journal of Applied Probability.

[2]  Roberto Di Pietro,et al.  Sensor Networks that Are Provably Resilient , 2006, 2006 Securecomm and Workshops.

[3]  James Allen Fill,et al.  Random intersection graphs when m= w (n): an equivalence theorem relating the evolution of the G ( n, m, p ) and G ( n,P /italic>) models , 2000 .

[4]  Jeong Han Kim,et al.  Perfect matchings in random uniform hypergraphs , 2003, Random Struct. Algorithms.

[5]  Mindaugas Bloznelis Degree distribution of a typical vertex in a general random intersection graph , 2008 .

[6]  Edward R. Scheinerman,et al.  On Random Intersection Graphs: The Subgraph Problem , 1999, Combinatorics, Probability and Computing.

[7]  Andreas N. Lagerås,et al.  Epidemics on Random Graphs with Tunable Clustering , 2007, Journal of Applied Probability.

[8]  Willemien Kets,et al.  RANDOM INTERSECTION GRAPHS WITH TUNABLE DEGREE DISTRIBUTION AND CLUSTERING , 2009, Probability in the Engineering and Informational Sciences.

[9]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[10]  Béla Bollobás,et al.  Random Graphs , 1985 .

[11]  A. Barbour,et al.  Poisson Approximation , 1992 .

[12]  Erhard Godehardt,et al.  Two Models of Random Intersection Graphs for Classification , 2003 .

[13]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[14]  James Allen Fill,et al.  Random intersection graphs when m=omega(n): An equivalence theorem relating the evolution of the G(n, m, p) and G(n, p) models , 2000, Random Struct. Algorithms.

[15]  Mindaugas Bloznelis,et al.  Component evolution in a secure wireless sensor network , 2009 .