The finite element method for a boundary value problem with strong singularity

The existence and uniqueness of the R"@n-generalized solution for the third-boundary-value problem and the non-self-adjoint second-order elliptic equation with strong singularity are established. We construct a finite element method with a basis containing singular functions. The rate of convergence of the approximate solution to the R"@n-generalized solution in the norm of the Sobolev weighted space is established and, finally, results of numerical experiments are presented.

[1]  R. Jackson Inequalities , 2007, Algebra for Parents.

[2]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[3]  Norbert Heuer,et al.  On the finite element method for elliptic problems with degenerate and singular coefficients , 2006, Math. Comput..

[4]  Kenneth Eriksson,et al.  Galerkin Methods for Singular Boundary Value Problems in One Space Dimension , 1984 .

[5]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[6]  Kenneth Eriksson Improved accuracy by adapted mesh-refinements in the finite element method , 1985 .

[7]  Dennis Jespersen,et al.  Ritz–Galerkin Methods for Singular Boundary Value Problems , 1978 .

[8]  C. Schwab,et al.  EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS , 2005 .

[9]  I. Babuska Error-bounds for finite element method , 1971 .

[10]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[11]  Victor Nistor,et al.  Analysis of a modified Schrödinger operator in 2D: Regularity, index, and FEM , 2009 .

[12]  Ridgway Scott,et al.  Finite element convergence for singular data , 1973 .

[13]  Franck Assous,et al.  Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method , 2003 .

[14]  Kenneth Eriksson,et al.  Finite element methods of optimal order for problems with singular data , 1985 .

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  P. Grisvard Boundary value problems in non-smooth domains , 1980 .

[17]  Paola Pietra,et al.  Mixed finite element approximation of a degenerate elliptic problem , 1995 .

[18]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[19]  A. Gushchin ON THE DIRICHLET PROBLEM FOR A SECOND-ORDER ELLIPTIC EQUATION , 1990 .

[20]  Franck Assous,et al.  Numerical Solution to the Time-Dependent Maxwell Equations in Two-Dimensional Singular Domains , 2000 .