Complexiton solutions of the Toda lattice equation

A set of coupled conditions consisting of differential-difference equations is presented for Casorati determinants to solve the Toda lattice equation. One class of the resulting conditions leads to an approach for constructing complexiton solutions to the Toda lattice equation through the Casoratian formulation. An analysis is made for solving the resulting system of differential-difference equations, thereby providing the general solution yielding eigenfunctions required for forming complexitons. Moreover, a feasible way is presented to compute the required eigenfunctions, along with examples of real complexitons of lower order.

[1]  Wenxiu Ma,et al.  Rational solutions of the Toda lattice equation in Casoratian form , 2004 .

[2]  J. Nimmo,et al.  Soliton solution of three differential-difference equations in wronskian form , 1983 .

[3]  R. Hirota,et al.  Two-dimensional Toda lattice equations , 1988 .

[4]  S. Takeno,et al.  Approximate soliton solutions around an exact soliton solution of the toda lattice equation , 1988 .

[5]  Negaton and positon solutions of the KdV and mKdV hierarchy , 1995, hep-th/9505133.

[6]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .

[7]  Marek Jaworski Breather-like solution of the Korteweg-de Vries equation , 1984 .

[8]  Mark J. Ablowitz,et al.  A Nonlinear Difference Scheme and Inverse Scattering , 1976 .

[9]  Morikazu Toda,et al.  Nonlinear waves and solitons , 1989 .

[10]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[11]  Toda hierarchy with indefinite metric , 1995, solv-int/9505004.

[12]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[13]  Negaton and Positon Solutions of the KdV Equation , 1995 .

[14]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[15]  V. Matveev,et al.  Positons for the Toda lattice and related spectral problems , 1995 .

[16]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations. : I. A Difference Analogue of the Korteweg-de Vries Equation , 1977 .

[17]  R. Hirota Exact N-Soliton Solution of a Nonlinear Lumped Network Equation , 1973 .

[18]  V. Matveev,et al.  Generalized Wronskian formula for solutions of the KdV equations: first applications , 1992 .

[19]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[20]  Songmu Zheng,et al.  Nonlinear evolution equations , 2004 .

[21]  K. Maruno,et al.  Generalized Casorati Determinant and Positon-Negaton-Type Solutions of the Toda Lattice Equation , 2004 .

[22]  V. Matveev Positons: Slowly Decreasing Analogues of Solitons , 2002 .

[23]  M. Toda Vibration of a Chain with Nonlinear Interaction , 1967 .