Complexiton solutions of the Toda lattice equation
暂无分享,去创建一个
[1] Wenxiu Ma,et al. Rational solutions of the Toda lattice equation in Casoratian form , 2004 .
[2] J. Nimmo,et al. Soliton solution of three differential-difference equations in wronskian form , 1983 .
[3] R. Hirota,et al. Two-dimensional Toda lattice equations , 1988 .
[4] S. Takeno,et al. Approximate soliton solutions around an exact soliton solution of the toda lattice equation , 1988 .
[5] Negaton and positon solutions of the KdV and mKdV hierarchy , 1995, hep-th/9505133.
[6] Ryogo Hirota,et al. Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .
[7] Marek Jaworski. Breather-like solution of the Korteweg-de Vries equation , 1984 .
[8] Mark J. Ablowitz,et al. A Nonlinear Difference Scheme and Inverse Scattering , 1976 .
[9] Morikazu Toda,et al. Nonlinear waves and solitons , 1989 .
[10] Wenxiu Ma,et al. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.
[11] Toda hierarchy with indefinite metric , 1995, solv-int/9505004.
[12] M. Ablowitz,et al. Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .
[13] Negaton and Positon Solutions of the KdV Equation , 1995 .
[14] Wen-Xiu Ma,et al. Complexiton solutions to the Korteweg–de Vries equation , 2002 .
[15] V. Matveev,et al. Positons for the Toda lattice and related spectral problems , 1995 .
[16] Ryogo Hirota,et al. Nonlinear Partial Difference Equations. : I. A Difference Analogue of the Korteweg-de Vries Equation , 1977 .
[17] R. Hirota. Exact N-Soliton Solution of a Nonlinear Lumped Network Equation , 1973 .
[18] V. Matveev,et al. Generalized Wronskian formula for solutions of the KdV equations: first applications , 1992 .
[19] V. Matveev,et al. Darboux Transformations and Solitons , 1992 .
[20] Songmu Zheng,et al. Nonlinear evolution equations , 2004 .
[21] K. Maruno,et al. Generalized Casorati Determinant and Positon-Negaton-Type Solutions of the Toda Lattice Equation , 2004 .
[22] V. Matveev. Positons: Slowly Decreasing Analogues of Solitons , 2002 .
[23] M. Toda. Vibration of a Chain with Nonlinear Interaction , 1967 .