Combining Graph Structure Exploitation and Propositional Reasoning for the Maximum Clique Problem

State-of-the-art branch-and-bound algorithms for the maximum clique problem (Maxclique) generally exploit the structural information of a graph $G$ to partition $G$ into independent sets, in order to derive an upper bound for the cardinality of a maximum clique of $G$, which cannot be very tight for imperfect graphs. On the other hand, while Maxclique can be easily encoded into MaxSAT to be solved using a MaxSAT solver, general-purpose MaxSAT solvers are not competitive for solving Maxclique, because they do not exploit the structural information of the graph. Recently, we have shown that propositional reasoning developed for the MaxSAT solvers can be used to improve the upper bound based on the partition. In this paper, we propose and study several improvements to this approach by better combining graph structure exploitation and propositional reasoning to solve Maxclique. Experimental results show that the improvements are very effective on hard random graphs and on DIMACS Maxclique benchmarks which are widely used to evaluate branch-and-bound algorithms for Maxclique.

[1]  Etsuji Tomita,et al.  An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique , 2003, DMTCS.

[2]  Maria Luisa Bonet,et al.  Solving (Weighted) Partial MaxSAT through Satisfiability Testing , 2009, SAT.

[3]  Felip Manyà,et al.  MaxSAT, Hard and Soft Constraints , 2021, Handbook of Satisfiability.

[4]  Marco Budinich,et al.  The Maximum Clique Problem in Spinorial Form , 2007 .

[5]  Janez Konc,et al.  An improved branch and bound algorithm for the maximum clique problem , 2007 .

[6]  Felip Manyà,et al.  Exploiting Unit Propagation to Compute Lower Bounds in Branch and Bound Max-SAT Solvers , 2005, CP.

[7]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[8]  Torsten Fahle,et al.  Simple and Fast: Improving a Branch-And-Bound Algorithm for Maximum Clique , 2002, ESA.

[9]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[10]  Martin Grötschel,et al.  Stable Sets in Graphs , 1993 .

[11]  Albert Oliveras,et al.  MiniMaxSAT: An Efficient Weighted Max-SAT solver , 2008, J. Artif. Intell. Res..

[12]  Chu-Min Li,et al.  An Efficient Branch-and-Bound Algorithm Based on MaxSAT for the Maximum Clique Problem , 2010 .

[13]  Felip Manyà,et al.  Detecting Disjoint Inconsistent Subformulas for Computing Lower Bounds for Max-SAT , 2006, AAAI.

[14]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[15]  Vasco M. Manquinho,et al.  Algorithms for Weighted Boolean Optimization , 2009, SAT.

[16]  Javier Larrosa,et al.  A Max-SAT Inference-Based Pre-processing for Max-Clique , 2008, SAT.

[17]  Etsuji Tomita,et al.  An Efficient Branch-and-bound Algorithm for Finding a Maximum Clique with Computational Experiments , 2001, J. Glob. Optim..

[18]  Jean-Charles Régin,et al.  CPAIOR ’ 03 Solving the Maximum Clique Problem with Constraint Programming , 2003 .

[19]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[20]  Felip Manyà,et al.  New Inference Rules for Max-SAT , 2007, J. Artif. Intell. Res..

[21]  Chu Min Li,et al.  An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique problem , 2010, AAAI 2010.

[22]  Sharad Malik,et al.  On Solving the Partial MAX-SAT Problem , 2006, SAT.

[23]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[24]  Wayne J. Pullan,et al.  Dynamic Local Search for the Maximum Clique Problem , 2011, J. Artif. Intell. Res..