Towards improving the efficiency of the fuzzy cognitive map classifier

Abstract Fuzzy Cognitive Map (FCM) is a model that combines selected features of fuzzy sets and neural networks. FCM is usually applied as a decision support tool or as a predictive model for time series forecasting. It is less well known as a classifier. To perform the classification, numeric data produced by the FCM must be assigned to class labels. To accomplish this task, we propose a new algorithm for generating thresholds for the discrimination of FCM outcomes. The thresholds resulting from the proposed algorithm are determined after the learning of the FCM, and, then they are applied when classifying new data. The results of the experiments conducted with publicly available data provide evidence that the application of the proposed algorithm leads to improved efficiency of the FCM classifier. Comparative experiments showed that the proposed approach makes the FCM a very competitive alternative to other state-of-the-art classifiers.

[1]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[2]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[3]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[4]  Elpiniki I. Papageorgiou,et al.  Fuzzy cognitive map ensemble learning paradigm to solve classification problems: Application to autism identification , 2012, Appl. Soft Comput..

[5]  Francky Catthoor,et al.  Design of fuzzy cognitive maps using neural networks for predicting chaotic time series , 2010, Neural Networks.

[6]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[7]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[8]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[9]  Núria Macià,et al.  Towards UCI+: A mindful repository design , 2014, Inf. Sci..

[10]  Bart Kosko,et al.  Virtual Worlds as Fuzzy Cognitive Maps , 1994, Presence: Teleoperators & Virtual Environments.

[11]  Yingnan Pan,et al.  Mean square exponential stability for discrete-time stochastic fuzzy neural networks with mixed time-varying delay , 2016, Neurocomputing.

[12]  Gonzalo Nápoles,et al.  Two-steps learning of Fuzzy Cognitive Maps for prediction and knowledge discovery on the HIV-1 drug resistance , 2014, Expert Syst. Appl..

[13]  Witold Pedrycz,et al.  Modeling time series with fuzzy cognitive maps , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[14]  Krzysztof Wrobel,et al.  Medical diagnosis using fuzzy cognitive map classifier , 2015 .

[15]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[16]  Chrysostomos D. Stylios,et al.  Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule , 2003, Australian Conference on Artificial Intelligence.

[17]  Elpiniki I. Papageorgiou,et al.  Multi-step prediction of pulmonary infection with the use of evolutionary fuzzy cognitive maps , 2012, Neurocomputing.

[18]  Jose L. Salmeron,et al.  Fuzzy grey cognitive maps and nonlinear Hebbian learning in process control , 2013, Applied Intelligence.

[19]  Yiannis S. Boutalis,et al.  Fuzzy Cognitive Maps for Pattern Recognition Applications , 2008, Int. J. Pattern Recognit. Artif. Intell..

[20]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[21]  Michael Glykas,et al.  Fuzzy Cognitive Maps , 2010 .

[22]  Michael N. Vrahatis,et al.  Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization , 2005, Journal of Intelligent Information Systems.

[23]  Charu C. Aggarwal,et al.  Feature Selection for Classification: A Review , 2014, Data Classification: Algorithms and Applications.

[24]  Chrysostomos D. Stylios,et al.  Active Hebbian learning algorithm to train fuzzy cognitive maps , 2004, Int. J. Approx. Reason..

[25]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[26]  Dimitris E. Koulouriotis,et al.  Towards Hebbian learning of Fuzzy Cognitive Maps in pattern classification problems , 2012, Expert Syst. Appl..

[27]  Jose L. Salmeron,et al.  A Review of Fuzzy Cognitive Maps Research During the Last Decade , 2013, IEEE Transactions on Fuzzy Systems.

[28]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..

[29]  Panagiota Spyridonos,et al.  Brain tumor characterization using the soft computing technique of fuzzy cognitive maps , 2008, Appl. Soft Comput..

[30]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[31]  Panagiotis Oikonomou,et al.  Bagged Nonlinear Hebbian Learning Algorithm for Fuzzy Cognitive Maps Working on Classification Tasks , 2012, SETN.

[32]  Przemyslaw Juszczuk,et al.  Predictive Capabilities of Adaptive and Evolutionary Fuzzy Cognitive Maps - A Comparative Study , 2009, Intelligent Systems for Knowledge Management.

[33]  Luca Scrucca,et al.  GA: A Package for Genetic Algorithms in R , 2013 .

[34]  Sundaram Suresh,et al.  A complex-valued neuro-fuzzy inference system and its learning mechanism , 2014, Neurocomputing.

[35]  Elpiniki I. Papageorgiou,et al.  Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder , 2011, Expert Syst. Appl..

[36]  Senén Barro,et al.  Do we need hundreds of classifiers to solve real world classification problems? , 2014, J. Mach. Learn. Res..

[37]  Elpiniki I. Papageorgiou,et al.  Linguistic Fuzzy Cognitive Map (LFCM) for pattern recognition , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[38]  B. Kosco Differential Hebbian learning , 1987 .

[39]  Peter M. A. Sloot,et al.  Individual Decision Making Can Drive Epidemics: A Fuzzy Cognitive Map Study , 2014, IEEE Transactions on Fuzzy Systems.

[40]  Witold Pedrycz,et al.  The modeling and prediction of time series based on synergy of high-order fuzzy cognitive map and fuzzy c-means clustering , 2014, Knowl. Based Syst..

[41]  Imre J. Rudas,et al.  Intelligent robust control for uncertain nonlinear multivariable systems using recurrent cerebellar model neural networks , 2015 .

[42]  Alicja Wakulicz-Deja,et al.  Mining temporal medical data using adaptive fuzzy cognitive maps , 2009, 2009 2nd Conference on Human System Interactions.

[43]  Jose L. Salmeron,et al.  Evolutionary learning of fuzzy grey cognitive maps for the forecasting of multivariate, interval-valued time series , 2014, Int. J. Approx. Reason..

[44]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[45]  Witold Pedrycz,et al.  Genetic learning of fuzzy cognitive maps , 2005, Fuzzy Sets Syst..

[46]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[47]  Somayeh Alizadeh,et al.  Learning FCM by chaotic simulated annealing , 2009 .

[48]  Jose L. Salmeron,et al.  Supporting Decision Makers with Fuzzy Cognitive Maps , 2009 .

[49]  H WittenIan,et al.  The WEKA data mining software , 2009 .

[50]  Michael R. Berthold,et al.  Mixed fuzzy rule formation , 2003, Int. J. Approx. Reason..

[51]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[52]  George A. Papakostas,et al.  Classifying Patterns Using Fuzzy Cognitive Maps , 2010 .

[53]  Jose L. Salmeron,et al.  Dynamic optimization of fuzzy cognitive maps for time series forecasting , 2016, Knowl. Based Syst..

[54]  Yingnan Pan,et al.  New dissipativity condition of stochastic fuzzy neural networks with discrete and distributed time-varying delays , 2015, Neurocomputing.

[55]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[56]  Jose L. Salmeron,et al.  A Fuzzy Grey Cognitive Maps-based Decision Support System for radiotherapy treatment planning , 2012, Knowl. Based Syst..