A multi-objective approach to indoor wireless heterogeneous networks planning based on biogeography-based optimization

In this paper, we present a multi-objective optimization approach for indoor wireless network planning subject to constraints for exposure minimization, coverage maximization and power consumption minimization. We consider heterogeneous networks consisting of WiFi access points (APs) and long term evolution (LTE) femtocells. We propose a design framework based on multi-objective biogeography-based optimization (MOBBO). We apply the MOBBO algorithm to network planning design cases in a real office environment. To validate this approach we compare results with other multi-objective algorithms like the nondominated sorting genetic algorithm-II (NSGA-II) and the generalized differential evolution (GDE3) algorithm. The results of the proposed method indicate the advantages and applicability of the multi-objective approach.

[1]  Lajos Hanzo,et al.  Minimum bit error rate multiuser transmission designs using particle swarm optimisation , 2009, IEEE Transactions on Wireless Communications.

[2]  K. Siakavara,et al.  Reducing the number of elements in linear arrays using biogeography-based optimization , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[3]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[4]  Fulvio Babich,et al.  Cooperative Coding Schemes: Design and Performance Evaluation , 2012, IEEE Transactions on Wireless Communications.

[5]  J. N. Sahalos,et al.  A Multi-Objective Approach to Subarrayed Linear Antenna Arrays Design Based on Memetic Differential Evolution , 2013, IEEE Transactions on Antennas and Propagation.

[6]  K. C. Tan,et al.  CEC 2007 Conference Report [Conference Reports] , 2008, IEEE Computational Intelligence Magazine.

[7]  Luc Martens,et al.  Reducing the power consumption in wireless access networks: overview and recommendations , 2012 .

[8]  Jouni Lampinen,et al.  An Empirical Study of Control Parameters for The Third Version of Generalized Differential Evolution (GDE3) , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[9]  Jenn-Kaie Lain,et al.  Joint Transmit/Receive Antenna Selection for MIMO Systems: A Real-Valued Genetic Approach , 2011, IEEE Communications Letters.

[10]  Saku Kukkonen,et al.  An Empirical Study of Control Parameters for Generalized Differential Evolution , 2022 .

[11]  Mznah Al-Rodhaan,et al.  Achieving Proportional Fairness via AP Power Control in Multi-Rate WLANs , 2011, IEEE Transactions on Wireless Communications.

[12]  A. J. Motley,et al.  Radio coverage in buildings , 1990 .

[13]  Jun Zhang,et al.  Minimizing Cost of Placement of Multi-Radio and Multi-Power-Level Access Points with Rate Adaptation in Indoor Environment , 2011, IEEE Transactions on Wireless Communications.

[14]  Minghao Yin,et al.  Multiobjective Binary Biogeography Based Optimization for Feature Selection Using Gene Expression Data , 2013, IEEE Transactions on NanoBioscience.

[15]  F. Yang,et al.  Synthesis of Conformal Phased Array With Improved NSGA-II Algorithm , 2009, IEEE Transactions on Antennas and Propagation.

[16]  Wei Cheng,et al.  An Elitism Strategy Based Genetic Algorithm for Streaming Pattern Discovery in Wireless Sensor Networks , 2011, IEEE Communications Letters.

[17]  Supachai Phaiboon,et al.  An empirically based path loss model for indoor wireless channels in laboratory building , 2002, 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. TENCOM '02. Proceedings..

[18]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[19]  Rafael P. Torres,et al.  CINDOOR: an engineering tool for planning and design of wireless systems in enclosed spaces , 1999 .

[20]  Jouni Lampinen,et al.  Performance assessment of Generalized Differential Evolution 3 with a given set of constrained multi-objective test problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[21]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[22]  K. S. Swarup,et al.  Multi-objective biogeography based optimization for optimal PMU placement , 2012, Appl. Soft Comput..

[23]  Zhen Peng,et al.  Cognitive radio spectrum allocation using evolutionary algorithms , 2009, IEEE Transactions on Wireless Communications.

[24]  Prerna Jain,et al.  A new hybrid technique for solution of economic load dispatch problems based on Biogeography Based Optimization , 2011, TENCON 2011 - 2011 IEEE Region 10 Conference.

[25]  K. S. Swarup,et al.  Power system observability Using Biogeography Based Optimization , 2011 .

[26]  B. Bhattacharya,et al.  A novel population-based optimization algorithm for optimal distribution capacitor planning , 2011, 2011 International Conference on Energy, Automation and Signal.

[27]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[28]  Jouni Lampinen,et al.  Performance assessment of Generalized Differential Evolution 3 (GDE3) with a given set of problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[29]  Zhisheng Niu,et al.  Improving the Energy Efficiency of Two-Tier Heterogeneous Cellular Networks through Partial Spectrum Reuse , 2013, IEEE Transactions on Wireless Communications.

[30]  Tapan K. Sarkar,et al.  Efficient ray-tracing methods for propagation prediction for indoor wireless communications , 2001 .

[31]  Luc Martens,et al.  Modelling and optimization of power consumption in wireless access networks , 2011, Comput. Commun..

[32]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[33]  S. C. Srivastava,et al.  Optimal Control of Voltage and Power in a Multi-Zonal MVDC Shipboard Power System , 2012, IEEE Transactions on Power Systems.

[34]  Luc Martens,et al.  Assessment of RF Exposures from Emerging Wireless Communication Technologies in Different Environments , 2012, Health physics.

[35]  Friedrich M. Landstorfer,et al.  Deterministic Propagation Model for the Planning of Hybrid Urban and Indoor Scenarios , 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.

[36]  John N. Sahalos,et al.  Pareto Optimal Yagi-Uda Antenna Design Using Multi-Objective Differential Evolution , 2010 .

[37]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[38]  Kris Vanhecke,et al.  Exposure optimization in indoor wireless networks by heuristic network planning , 2013 .

[39]  Hongwei Mo,et al.  Constrained Multi-objective Biogeography Optimization Algorithm for Robot Path Planning , 2013, ICSI.

[40]  Leandro dos Santos Coelho,et al.  Biogeography-based Optimization approach based on Predator-Prey concepts applied to path planning of 3-DOF robot manipulator , 2010, 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010).

[41]  Jeffrey G. Andrews,et al.  Belief Propagation for Distributed Downlink Beamforming in Cooperative MIMO Cellular Networks , 2011, IEEE Transactions on Wireless Communications.

[42]  Kalyanmoy Deb,et al.  A Fast and Effective Method for Pruning of Non-dominated Solutions in Many-Objective Problems , 2006, PPSN.

[43]  Patrick Siarry,et al.  Hybridizing Biogeography-Based Optimization With Differential Evolution for Optimal Power Allocation in Wireless Sensor Networks , 2011, IEEE Transactions on Vehicular Technology.

[44]  P. K. Chattopadhyay,et al.  Biogeography-Based Optimization for Different Economic Load Dispatch Problems , 2010, IEEE Transactions on Power Systems.

[45]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[46]  Kris Vanhecke,et al.  Coverage prediction and optimization algorithms for indoor environments , 2012, EURASIP J. Wirel. Commun. Netw..

[47]  Sotirios K Goudos,et al.  Pareto Optimal Microwave Filter Design Using Multiobjective Differential Evolution , 2010, IEEE Transactions on Antennas and Propagation.

[48]  Hao Guo,et al.  Real-Time Estimation of Sensor Node's Position Using Particle Swarm Optimization With Log-Barrier Constraint , 2011, IEEE Transactions on Instrumentation and Measurement.

[49]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[50]  Zhisheng Niu,et al.  Optimal Combination of Base Station Densities for Energy-Efficient Two-Tier Heterogeneous Cellular Networks , 2013, IEEE Transactions on Wireless Communications.

[51]  P. Wertz,et al.  Dominant Path Prediction Model for Indoor Scenarios , 2005 .

[52]  A. Ahlbom Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz) , 1998 .

[53]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[54]  Muhammad Naeem,et al.  Source and Relay Power Selection Using Biogeography-Based Optimization for Cognitive Radio Systems , 2011, 2011 IEEE Vehicular Technology Conference (VTC Fall).

[55]  Ingrid Moerman,et al.  Concept and framework of a self-regulating symbiotic network , 2012, EURASIP J. Wirel. Commun. Netw..

[56]  Luc Martens,et al.  REDUCING THE POWER CONSUMPTION IN WIRE- LESS ACCESS NETWORKS: OVERVIEW AND RECOM- MENDATIONS , 2012 .