Pose-Graph SLAM for Underwater Navigation

This chapter reviews the concept of pose-graph simultaneous localization and mapping (SLAM) for underwater navigation . We show that pose-graph SLAM is a generalized framework that can be applied to many diverse underwater navigation problems in marine robotics . We highlight three specific examples as applied in the areas of autonomous ship hull inspection and multi-vehicle cooperative navigation .

[1]  O. Pizarro,et al.  Visually Augmented Navigation for Autonomous Underwater Vehicles , 2008, IEEE Journal of Oceanic Engineering.

[2]  Matthew R. Walter,et al.  Consistent cooperative localization , 2009, 2009 IEEE International Conference on Robotics and Automation.

[3]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[4]  Hanumant Singh,et al.  Synchronous‐clock, one‐way‐travel‐time acoustic navigation for underwater vehicles , 2011, J. Field Robotics.

[5]  Paul Ozog,et al.  Real-time SLAM with piecewise-planar surface models and sparse 3D point clouds , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Sebastian Thrun,et al.  The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures , 2006, Int. J. Robotics Res..

[7]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[8]  Franz S. Hover,et al.  A Vehicle System for Autonomous Relative Survey of In-Water Ships , 2007 .

[9]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[10]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[11]  Luke Fletcher,et al.  Multiple relative pose graphs for robust cooperative mapping , 2010, 2010 IEEE International Conference on Robotics and Automation.

[12]  John J. Leonard,et al.  Decentralized cooperative trajectory estimation for autonomous underwater vehicles , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Paul Ozog,et al.  Long‐term Mapping Techniques for Ship Hull Inspection and Surveillance using an Autonomous Underwater Vehicle , 2016, J. Field Robotics.

[14]  John J. Leonard,et al.  A measurement distribution framework for cooperative navigation using multiple AUVs , 2010, 2010 IEEE International Conference on Robotics and Automation.

[15]  Stephen R. Marsland,et al.  Fast, On-Line Learning of Globally Consistent Maps , 2002, Auton. Robots.

[16]  Pavel Zemcík,et al.  Fast covariance recovery in incremental nonlinear least square solvers , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[18]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[19]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[20]  Jim Kurose,et al.  A survey of practical issues in underwater networks , 2007 .

[21]  Robert M. Haralick Propagating covariance in computer vision , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[22]  H. Singh,et al.  UWIT: underwater image toolbox for optical image processing and mosaicking in MATLAB , 2002, Proceedings of the 2002 Interntional Symposium on Underwater Technology (Cat. No.02EX556).

[23]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[24]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters for View-Based SLAM , 2006, IEEE Transactions on Robotics.

[25]  Frank Dellaert,et al.  Subgraph-preconditioned conjugate gradients for large scale SLAM , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[27]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[28]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[29]  Stergios I. Roumeliotis,et al.  Distributed multirobot localization , 2002, IEEE Trans. Robotics Autom..

[30]  Ryan M. Eustice,et al.  Opportunistic sampling-based active visual SLAM for underwater inspection , 2016, Auton. Robots.

[31]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[32]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[33]  R. McEwen,et al.  Low-cost terrain relative navigation for long-range AUVs , 2008, OCEANS 2008.

[34]  Ryan M. Eustice,et al.  An origin state method for communication constrained cooperative localization with robustness to packet loss , 2014, Int. J. Robotics Res..

[35]  Michael Kaess,et al.  Generic Node Removal for Factor-Graph SLAM , 2014, IEEE Transactions on Robotics.

[36]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[37]  R. Eustice,et al.  Towards bathymetry-optimized Doppler re-navigation for AUVs , 2005, Proceedings of OCEANS 2005 MTS/IEEE.

[38]  Ryan M. Eustice,et al.  Active visual SLAM for robotic area coverage: Theory and experiment , 2015, Int. J. Robotics Res..

[39]  Ryan M. Eustice,et al.  Cooperative localization by factor composition over a faulty low-bandwidth communication channel , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[40]  Ryan M. Eustice,et al.  Real-Time Visual SLAM for Autonomous Underwater Hull Inspection Using Visual Saliency , 2013, IEEE Transactions on Robotics.

[41]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[42]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[43]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.