All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror

Abstract We review our recent progress on the design, modeling and construction of all-normal dispersion Yb-doped fiber lasers mode-locked using a nonlinear amplifying loop mirror. The all-fiber nature of the devices we consider permits accurate numerical simulations with minimal approximations or free-running parameters, and we describe in detail a refined numerical modeling scheme that combines generalized nonlinear envelope equations with analytically simulated gain dynamics. Guided by insights obtained from numerical modeling, we have experimentally realized robust, environmentally stable laser designs that offer flexible operation performance for a wide variety of applications. In particular, the unique all-PM-fiber design makes our devices ideally suitable for industrial laser micromachining applications.

[1]  M. Kavehrad,et al.  Analytical model for rare-earth-doped fiber amplifiers and lasers , 1994 .

[2]  F. Wise,et al.  All-fiber normal-dispersion femtosecond laser. , 2008, Optics express.

[3]  Miro Erkintalo,et al.  Raman rogue waves in a partially mode-locked fiber laser. , 2014, Optics letters.

[4]  J R Taylor,et al.  Generation and direct measurement of giant chirp in a passively mode-locked laser. , 2009, Optics letters.

[5]  F. Wise,et al.  Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. , 2009, Optics letters.

[6]  D. Wandt,et al.  High-power dissipative solitons from an all-normal dispersion erbium fiber oscillator. , 2010, Optics letters.

[7]  F. Wise,et al.  Self-similar evolution of parabolic pulses in a laser. , 2004, Physical review letters.

[8]  Y. Silberberg,et al.  Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. , 1997, Optics letters.

[9]  M. Fermann,et al.  Nonlinear amplifying loop mirror. , 1990, Optics letters.

[10]  Miro Erkintalo,et al.  Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror. , 2012, Optics express.

[11]  Frank W. Wise,et al.  Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser , 2003 .

[12]  A. Ellis,et al.  Semiconductor laser amplifiers for ultrafast all-optical signal processing , 1997 .

[13]  P. Bhattacharya,et al.  High-power erbium-doped fiber laser mode locked by a semiconductor saturable absorber. , 1995, Optics letters.

[14]  S. Babin,et al.  20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator. , 2012, Optics letters.

[15]  I. Duling All-fiber ring soliton laser mode locked with a nonlinear mirror. , 1991, Optics letters.

[16]  J W Nicholson,et al.  A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber. , 2007, Optics express.

[17]  Dai Yoshitomi,et al.  Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator. , 2008, Optics express.

[18]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser. , 2006, Optics express.

[19]  M. Rochette,et al.  Raman-induced noiselike pulses in a highly nonlinear and dispersive all-fiber ring laser. , 2013, Optics letters.

[20]  Frank W. Wise,et al.  Dissipative solitons in normal-dispersion fiber lasers , 2008 .

[21]  Andy Chong,et al.  Environmentally stable all-normal-dispersion femtosecond fiber laser. , 2008, Optics letters.

[22]  Yves Jaouën,et al.  Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980nm , 2008 .

[23]  Frank W. Wise,et al.  Properties of normal-dispersion femtosecond fiber lasers , 2008 .

[24]  Y. Silberberg,et al.  Control of noiselike pulse generation in erbium-doped fiber lasers , 1998, IEEE Photonics Technology Letters.

[25]  Miro Erkintalo,et al.  Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers. , 2013, Optics letters.

[26]  Neil G. R. Broderick,et al.  120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser , 2013 .

[27]  K. Cossel,et al.  Ultrabroadband coherent supercontinuum frequency comb , 2011, 1105.2093.

[28]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[29]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. , 2007, Optics letters.

[30]  J. Harvey,et al.  Experimental realisation of a mode-locked parabolic Raman fiber oscillator , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[31]  Frank W. Wise,et al.  Recent advances in fibre lasers for nonlinear microscopy , 2013, Nature Photonics.

[32]  Neil G. R. Broderick,et al.  Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability. , 2013, Optics letters.

[33]  Songnian Fu,et al.  High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser. , 2009, Optics letters.

[34]  Ingmar Hartl,et al.  Ultrafast fibre lasers , 2013, Nature Photonics.

[35]  B C Thomsen,et al.  Self-similar propagation and amplification of parabolic pulses in optical fibers. , 2000, Physical review letters.

[36]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[37]  P. D. Drummond,et al.  Quantum noise in optical fibers. I. Stochastic equations , 1999 .

[38]  Christian Hapke,et al.  0.5 µJ pulses from a giant-chirp ytterbium fiber oscillator. , 2011, Optics express.

[39]  Miro Erkintalo,et al.  Environmentally stable all-PM all-fiber giant chirp oscillator. , 2012, Optics express.

[40]  A E Bednyakova,et al.  Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering. , 2013, Optics express.