Object-oriented image analysis via analogic CNN algorithms. II. Image synthesis and consistency observation

For pt.I see ibid., p.172-9 (2002). In the context of image analysis for object-oriented coding schemes, this paper presents new analogic CNN algorithms for implementing the image synthesis and consistency observation stages. Along with the motion estimation algorithm illustrated in the companion paper, the proposed approach represents a framework for implementing CNN-based real-time image analysis. Simulation results, carried out for Miss America video sequence, confirm the validity of the algorithms developed herein.

[1]  K. Stuhlmuller,et al.  Recent advances in video compression , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[2]  Faouzi Kossentini,et al.  H.263+: video coding at low bit rates , 1998, IEEE Trans. Circuits Syst. Video Technol..

[3]  Leon O. Chua,et al.  Object‐oriented image analysis for very‐low‐bitrate video‐coding systems using the CNN universal machine , 1997 .

[4]  Shipeng Li,et al.  Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual object coding , 2000, IEEE Trans. Circuits Syst. Video Technol..

[5]  Ashraf A. Kassim,et al.  Rate-scalable object-based wavelet codec with implicit shape coding , 2000, IEEE Trans. Circuits Syst. Video Technol..

[6]  Leon O. Chua,et al.  On object-oriented video coding using the CNN Universal Machine , 1996 .

[7]  Shipeng Li,et al.  Arbitrarily shaped video-object coding by wavelet , 2001, IEEE Trans. Circuits Syst. Video Technol..