On linear and quadratic constructions of aggregation functions

Abstract In the paper we introduce and discuss linear and quadratic constructions of aggregation functions based on an a priori given aggregation function. We focus our attention on linear and quadratic constructions transforming any aggregation function from the considered class of aggregation functions into a new aggregation function belonging to the same class. We study quadratic constructions of distinguished classes of aggregation functions with neutral element ϵ ∈ { 0 , 1 } , in particular, semi-copulas, quasi-copulas, copulas, triangular norms and their duals. In all cases, the final results fully characterize quadratic functions which are universal for quadratic constructions of aggregation functions of the considered type.

[1]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[2]  Anna Kolesárová,et al.  1-Lipschitz aggregation operators and quasi-copulas , 2003, Kybernetika.

[3]  R. Nelsen An Introduction to Copulas , 1998 .

[4]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[5]  Radko Mesiar,et al.  Piecewise linear aggregation functions based on triangulation , 2011, Inf. Sci..

[6]  Radko Mesiar,et al.  Semilinear copulas , 2008, Fuzzy Sets Syst..

[7]  Radko Mesiar,et al.  Quadratic constructions of copulas , 2015, Inf. Sci..

[8]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[9]  Mariano Eriz Aggregation Functions: A Guide for Practitioners , 2010 .

[10]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[11]  Vicenç Torra,et al.  Modeling decisions - information fusion and aggregation operators , 2007 .

[12]  Fabrizio Durante Generalized Composition of Binary Aggregation Operators , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[13]  Christian Genest,et al.  A Characterization of Quasi-copulas , 1999 .

[14]  Bernard De Baets,et al.  Biconic aggregation functions , 2012, Inf. Sci..

[15]  Radko Mesiar,et al.  On a new construction of 1-Lipschitz aggregation functions, quasi-copulas and copulas , 2013, Fuzzy Sets Syst..

[16]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[17]  Bernard De Baets,et al.  Orthogonal Grid Constructions of Copulas , 2007, IEEE Transactions on Fuzzy Systems.

[18]  Claudi Alsina,et al.  On the characterization of a class of binary operations on distribution functions , 1993 .

[19]  H. Joe Multivariate Models and Multivariate Dependence Concepts , 1997 .

[20]  Gaspar Mayor,et al.  Aggregation Operators , 2002 .

[21]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[22]  Fabio Spizzichino,et al.  Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes , 2005 .

[23]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[24]  Vicenç Torra,et al.  Modeling Decisions: Information Fusion and Aggregation Operators (Cognitive Technologies) , 2006 .