Characterization of microsatellite markers for the duckweed Spirodela polyrhiza and Lemna minor tested on samples from Europe or the United States of America

Microsatellite primers are a valuable tool to use for both observational and experimental studies in numerous taxa. Here, we develop 18 and 16 microsatellite markers for the widespread duckweeds Lemna minor and Spirodela polyrhiza, respectively. All 18 L. minor primers and 12 of the 16 S. polyrhiza primers amplified polymorphic loci when tested on samples from Europe or Western Pennsylvania, USA.

[1]  T. Ashman,et al.  Polyploidy impacts population growth and competition with diploids: multigenerational experiments reveal key life history tradeoffs , 2022, bioRxiv.

[2]  M. Frederickson,et al.  Harnessing plant-microbiome interactions for bioremediation across a freshwater urbanization gradient. , 2022, Water research.

[3]  Jiaqi Tan,et al.  Eco-evolutionary interaction between microbiome presence and rapid biofilm evolution determines plant host fitness , 2021, Nature Ecology & Evolution.

[4]  D. Breviario,et al.  Duckweed Species Genotyping and Interspecific Hybrid Discovery by Tubulin-Based Polymorphism Fingerprinting , 2021, Frontiers in Plant Science.

[5]  Martin M. Turcotte,et al.  Preference, performance, and impact of the water‐lily aphid on multiple species of duckweed , 2020 .

[6]  Dongmei Chen,et al.  Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza). , 2020, Journal of hazardous materials.

[7]  E. Lam,et al.  Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome , 2020, PloS one.

[8]  J. Kuever,et al.  A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) , 2020, TAXON.

[9]  A. Simons,et al.  Latitudinal variation in norms of reaction of phenology in the greater duckweed Spirodela polyrhiza , 2019, Journal of evolutionary biology.

[10]  Jiaming Zhang,et al.  De novo assembly, transcriptome characterization, and simple sequence repeat marker development in duckweed Lemna gibba , 2019, Physiology and Molecular Biology of Plants.

[11]  S. Wright,et al.  Population genomics of the facultatively asexual duckweed Spirodela polyrhiza. , 2019, The New phytologist.

[12]  David W. Armitage,et al.  Negative frequency-dependent growth underlies the stable coexistence of two cosmopolitan aquatic plants. , 2019, Ecology.

[13]  S. Wright,et al.  Population genomics of the facultatively asexual duckweed Spirodela polyrhiza , 2019, bioRxiv.

[14]  J. Gershenzon,et al.  Low genetic variation is associated with low mutation rate in the giant duckweed , 2018, Nature Communications.

[15]  F. Sikoki,et al.  Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. , 2019, Chemosphere.

[16]  Jonathan M. Levine,et al.  Effects of rapid evolution on species coexistence , 2019, Proceedings of the National Academy of Sciences.

[17]  R. Laird,et al.  Skimming the surface: duckweed as a model system in ecology and evolution. , 2018, American journal of botany.

[18]  T. Burg,et al.  Among‐strain consistency in the pace and shape of senescence in duckweed , 2018 .

[19]  J. Gershenzon,et al.  Low genetic variation is associated with low mutation rate in the giant duckweed , 2018, bioRxiv.

[20]  Wenjun Zhang,et al.  Characterization of 19 polymorphic SSR markers in Spirodela polyrhiza (Lemnaceae) and cross‐amplification in Lemna perpusilla , 2018, Applications in plant sciences.

[21]  Yang Fang,et al.  Development of a New Marker System for Identification of Spirodela polyrhiza and Landoltia punctata , 2017, International Journal of Genomics.

[22]  M. L. C. Vieira,et al.  Microsatellite markers: what they mean and why they are so useful , 2016, Genetics and molecular biology.

[23]  K. Appenroth,et al.  Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP) , 2015, Hydrobiologia.

[24]  D. Khasa,et al.  cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications1 , 2014, Applications in plant sciences.

[25]  A. Furtado,et al.  Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species , 2014, Plant Methods.

[26]  Georg Haberer,et al.  The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle , 2014, Nature Communications.

[27]  D. Prakash,et al.  Duckweed: an effective tool for phyto-remediation , 2013 .

[28]  A. Agrawal,et al.  A Field Experiment Demonstrating Plant Life-History Evolution and Its Eco-Evolutionary Feedback to Seed Predator Populations , 2013, The American Naturalist.

[29]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[30]  Martin M Turcotte,et al.  The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. , 2011, Ecology letters.

[31]  王丽华,et al.  国际生命条形码计划—DNA Barcoding , 2009 .

[32]  A. Estoup,et al.  Microsatellite null alleles and estimation of population differentiation. , 2007, Molecular biology and evolution.

[33]  C. Deschepper,et al.  M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. , 2001, BioTechniques.

[34]  W. Powell,et al.  Polymorphism revealed by simple sequence repeats , 1996 .

[35]  D. R. Fernando,et al.  Heavy-metal (Zn, Cd) tolerance in selected clones of duck weed (Lemna minor) , 1992, Plant and Soil.

[36]  W W Wilke,et al.  Multiplex polymerase chain reaction. , 1992, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[37]  D. Tautz,et al.  Slippage synthesis of simple sequence DNA. , 1992, Nucleic acids research.

[38]  D. Tautz Hypervariability of simple sequences as a general source for polymorphic DNA markers. , 1989, Nucleic acids research.

[39]  R. Schmid,et al.  The family of Lemnaceae - Monographic study, Vols. 1 and 2 - (Vols. 2 and 4 of Biosystematic investigations in the family of duckweeds (Lemnaceae)) , 1987, Plant Growth Regulation.

[40]  D. Tautz,et al.  Simple sequences are ubiquitous repetitive components of eukaryotic genomes. , 1984, Nucleic acids research.

[41]  W. Hillman The Lemnaceae, or duckweeds , 1961, The Botanical Review.

[42]  D. L. Jacobs An Ecological Life‐History of Spirodela Polyrhiza (Greater Duckweed) with Emphasis on the Turion Phase , 1947 .

[43]  The Duckweed Genomes , 2020 .

[44]  K. Appenroth,et al.  Taxonomy of duckweeds (Lemnaceae), potential new crop plants - , 2016 .

[45]  K. Appenroth,et al.  Relative in vitro growth rates of duckweeds (Lemnaceae) - the most rapidly growing higher plants. , 2015, Plant biology.

[46]  W. Cui,et al.  Growing duckweed for biofuel production: a review. , 2015, Plant biology.

[47]  K. Appenroth,et al.  Species distribution, genetic diversity and barcoding in the duckweed family (Lemnaceae) , 2014, Hydrobiologia.

[48]  Jay J. Cheng,et al.  Growing Duckweed to Recover Nutrients from Wastewaters and for Production of Fuel Ethanol and Animal Feed , 2009 .

[49]  Bruno S. Frey,et al.  In a field experiment , 2004 .

[50]  N. Siafakas,et al.  Multiplex polymerase chain reaction: A practical approach , 2002, Journal of clinical laboratory analysis.

[51]  M. Morgante,et al.  PCR-amplified microsatellites as markers in plant genetics. , 1993, The Plant journal : for cell and molecular biology.

[52]  R. U. Schenk,et al.  Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures , 1972 .